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Abstract: This report presents the results achieved in project ”Game theoretic, multi-agent approach to network traffic
monitoring.” funded under the award FA8655-10-1-3016. It is referred to as ITEM 0004 in the contract documentation.

The project aims to use the advanced techniques from the field of game theory, extensive games, planning and related AI

domains to improve the results of Network Intrusion Detection System (IDS). The goal of game theory use is to enable

the IDS to use its past observations of possible attacker’s activity in order to predict possible attacker’s actions and

to reconfigure itself in order detect these actions with higher probability. The studied system is based on the Network

Behavior Analysis design: it processes only the network statistics and avoids the explicit analysis of the transferred data

content performed by more traditional IDS systems. As such, it complements those systems by covering the network

against the threats inside the perimeter, where the potential attackers would be highly professional, well informed and

would target specific high-value targets. The long-term goal of our research is to be able to detect the relevant actions,

infer the intentions of the attackers and reduce the likelihood of their success.
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Chapter 1

Introduction

1.1 Introduction and Statement of Work

The project ”Game theoretic, multi-agent approach to network traffic monitoring”, also referred
to informally as GAMNEP, aims to improve the current generation of anomaly-based Intrusion
Detection Systems by allowing them to reason about the opponent, its intentions and its plans.
The project addresses the full scope of the problem: from the reception of raw traffic statistics
in the NetFlow format through automatic construction of game trees and identification of the
optimal strategy, which is then adopted by the system. In order to accomplish this task, we
base ourselves on the results of the past projects in the Intrusion Detection Field, financed by
US ARMY CERDEC (through ITC-Atlantic) and the projects in adversarial reasoning funded by
AFRL/EOARD.

Network Intrusion Detection/Protection Systems (IDS) are designed to identify and pos-
sibly block undesirable traffic detected on computer networks. Most of the current systems [49]
are based on the signature matching paradigm: they inspect the content of the transferred data
and look for the signatures of known attacks, in principal being similar to the anti-virus solu-
tions. While being very effective against well-known threats, these systems are ineffective against
new kinds of attacks: they are not able to combat threats that cannot be defined by a simple
signature, e.g. polymorphic malware, custom-written malware/attacks, malware command & con-
trol traffic or information exfiltration. Therefore, organizations that need an additional level of
security against advanced attackers typically protect themselves with the IDS systems based on
the anomaly detection principle [19]. These systems do not try to identify specific attacks, but
rather use past behavior of the network to predict its future behavior and report any significant
differences between the prediction and the actual behavior. The system described in this report
is network based and uses the NetFlow data as its input. This characteristics, together with the
anomaly-detection paradigm classifies the system as a Network Behavior Analysis solution
(NBA) in the NIST nomenclature [49].

As the network conditions change over time, the IDS may need to change its behavior/configuration
to adapt to the changing conditions. Formal approaches based on decision theory [54] and con-
trol theory [27] are commonly used to formalize the adaptation process and to ensure that basic
properties are satisfied in wide range of naturally occurring environments. The key parameters
that we seek to influence by the adaptation of any anomaly-based IDS are its sensitivity (detec-
tion rate or true positive rate) and the false positive rate. True Positives (TP) are the malicious
events correctly detected by the system, while the False Positives (FP) are the false alarms raised

1
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by the system. Any practically usable IDS needs to keep the rate of false positives down, while
maintaining the sensitivity.

In this project, we don’t aim to perform blind adaptation based on decision-theoretical approaches,
but we use our knowledge of opponents techniques, tactics and possible intentions to perform
selective adaptation based on system’s observation of past opponent’s actions. Furthermore, we
need to be aware of the possibility that the opponent is targeting the detection capabilities of our
system and attempts to avoid being detected. In this Technical report, we present the following
Sections, each of them concentrating on one problem aspect:

– Section 1.2 presents the system architecture, legacy self-monitoring, adaptation processes,
and briefly introduces the basics of the CAMNEP IDS. We don’t fully include all details of
the presented components, but rather refer the reader to published results for more details
about specific processes. This section does not correspond to a specific Research Target (RT),
except the target RT5, which is dedicated to Prototyping and Empirical Analysis.

– Section 2.1 presents the techniques and tools used to model the hypothetical attacker’s action
within the system with higher sensitivity. These actions are not performed on the network,
but we rely on the concept of Challenges (Section 1.2.4) to insert them into the system in
order to securely evaluate its response to baseline attack techniques. The results of this
process are then used to construct the game-theoretic models in Chapter 3. This section
presents a contribution to RT2, dedicated to the simulation component of the Opponent
modeling task.

– In Section 2.2, we present the approaches used to perform the event extraction, action recog-
nition, and opponent modeling. These components are used to extract meaningful, sym-
bolically described actions from the observed anomalous traffic, build behavior profiles of
network resources and use the profiles and identified actions both for system output and for
extensive game modeling introduced in Section 3.3. This section also presents a contribution
to RT2, dedicated to the behavior profile identification and action recognition component of
the Opponent modeling task.

– In Section 3.1, we present an updated version of the formalism describing the interaction
between the defender and the attacker inside an IDS as a sequence of single-stage games
with no transfer of information between the stages. This model is used as a formalism for
the regret minimization adaptation algorithm presented in Appendix B. Section 3.1 directly
contributes to the RT3, Attacker/defender interaction model. The research presented in
Appendix B partially contributes to RT4: Runtime IDS/P strategy selection algorithm as a
first baseline contribution in this direction.

– In Section 3.3, we present a far more elaborate formalism for the description of attacker-
defender interaction. This mechanism, based on games in extensive form, allows us to model
the actions of the adversary (detected by the mechanism from Section 2.2), the adapta-
tion decision taken by the system, and the effect of both decisions on system performance.
Through self-monitoring by means of Challenge insertion allows the model to reason also
about the actions which were not detected by the system, possibly as a result of adversarial
manipulation. This section is a core contribution to RT3, as it elaborates on the simple
model defined in Section 3.1 and enriches the model with extensive-game formalism which
allows us to use more elaborate reasoning strategies.

– In Section A, we address the problem of adversary’s manipulation of system’s detection
algorithms. Though still hypothetical and extremely difficult to elaborate against a dynamic
ensemble-based system, we still show that individual anomaly detection algorithms can be

2
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easily avoided by a skilled attacker. This section presents a contribution towards the RT1:
Domain Analysis, as it studies the deception actions unique to the IDS game.

1.1.1 Publication Results

The project has resulted in five accepted publications:

– SSCI 2011: Martin Rehák, Jan Stiborek, Martin Grill: Intelligence, not Integration:Distributed
Regret Minimization for IDS Control. In Computational Intelligence in Cyber Security
(CICS), 2011 IEEE Symposium [CD-ROM]. Piscataway: IEEE, 2011, p. 217-224. ISBN
978-1-4244-9905-2.

– AAMAS 2011: Martin Rehák, Michal Pěchouček, Martin Grill, Jan Stiborek, Karel Bartoš:
Game Theoretical Adaptation Model for Intrusion Detection System, to appear in Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Systems - Innovative Applications
Track (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2-6, 2011, Taipei,
Taiwan.

– IAT 2011: Martin Rehák, Jan Stiborek and Martin Grill: On the Value of Coordination in
Distributed Self-Adaptation of Intrusion Detection System. In Proceedings Web Intelligence
and Intelligent Agent Technology WI-IAT11. Los Alamitos, CA: IEEE Computer Soc., 2011.
ISBN 978-0-7695-4513-4.

– IWCMC 2011: Karel Bartoš, Martin Rehákand Vojtech Krmı́ček: Optimizing Flow Sam-
pling for Network Anomaly Detection, to appear in Proceedings of the TRaffic Analysis and
Classification (TRAC) Workshop (IWCMC2011-TRAC), July 2011, Istanbul, Turkey

– SPI 2011: Martin Rehák, Karel Bartoš, Martin Grill, Pavel Jisl, Jan Jusko, Tomas Pevný,
Michal Svoboda a Jan Stiborek: Strategic Self-Organization Methods for Intrusion Detection
Systems, to appear in Proceedings of Security and Protection of Information, May 2011,
University of Defence, Brno

Two of the accepted publications appear at major international conferences, the third is presented
at highly-specialized traffic analysis workshop before submission to more selective venue and the
last is a presentation for the Army technologist and security researches in the region.

3
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1.2 High-Level Design

This section provides a quick introduction into the problem area and presents the architecture and
components of the underlying Intrusion Detection Software. It does not aim to present the innova-
tive research performed during the project, but presents the system architecture and relationships
between the components, so that the reader can understood the implications of domain specifics
on game formulation.

1.2.1 System Concept

The Network Behavior Analysis [49] algorithms are primarily designed to identify strategic, per-
sistent threats operating inside the protected perimeter after having evaded the detection and
protection deployed on perimeter gateways. Unlike most Network Intrusion Detection Devices or
security appliances, they don’t analyze the content of the transmitted information, but use the
statistics (Fig. 1.1) in the NetFlow/IPFIX format [15, 14] to build, maintain and combine behav-
ior models. The behavior models capture the normal behavior of individual components (hosts or
services), relationships between the activity of the hosts and other traffic features. These models,
based on the past behavior of the monitored network, are then applied to the observed traffic and
the possible discrepancies between the model prediction and actual observation - anomalies - are
reported as possibly resulting from a malicious action.

Figure 1.1: Main Functional Blocks Interacting in GAMNEP project.

In Fig. 1.1, we show a highly simplified diagram of the CAMNEP system in the version designed
and maintained as an experimental testbed for the GAMNEP project. The system receives the
NetFlow data from network components and processes them in the Detection component. The
Detection component presents its output to the Event Extraction subsystem, which interacts with
Behavior Modeling to create concise, consistent, and classified set of events based not only on
current behavior, but also on the past behavior of the resource associated with the Event. The
Events are then accessible to system users, but in the same time, the same events processed

4
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through the behavior modeling, are used as recognized Actions for the construction of the game-
theoretic model of the interaction between the attacker and the system. The results of this model’s
processing are then used for the Adaptation of the Detection layer, so that the system would be
better optimized to detect the actions typically associated with the expected attacker’s behavior.

Duration Proto Src IP Addr:Port Dst IP Addr:Port Flags Pack. Bytes

0.400 TCP 192.168.195.164:1086 192.168.10.12:445 .A.... 2 84
0.000 TCP 62.97.162.208:3417 192.168.192.83:1172 .AP... 1 42
0.577 TCP 192.168.195.132:2544 194.228.32.3:80 .A.R.. 3 126
0.576 TCP 192.168.195.132:2545 194.228.32.3:80 .A.R.. 3 126
0.000 UDP 192.168.60.31:4021 192.168.19.247:53 ...... 1 55
0.000 ICMP 192.168.19.247:0 192.168.60.31:0 ...... 1 149
0.000 UDP 192.168.60.31:4021 192.168.60.1:53 ...... 1 55
0.000 UDP 192.168.60.31:4020 192.43.244.18:123 ...... 1 72

30.276 TCP 192.168.192.170:61158 71.33.170.53:1358 .AP... 307 368627
0.000 UDP 24.28.89.160:63319 192.168.192.83:58359 ...... 1 42
0.000 TCP 63.208.197.21:443 192.168.192.106:1031 .AP... 1 73
0.093 TCP 192.168.193.58:1302 192.168.192.5:110 .AP.SF 8 356
0.093 TCP 192.168.192.5:110 192.168.193.58:1302 .AP.SF 8 440
0.000 UDP 85.160.81.10:6766 192.168.192.217:11084 ...... 1 45
0.000 UDP 192.168.192.217:11084 85.160.81.10:6766 ...... 1 45
0.000 TCP 192.168.19.247:1723 192.168.60.19:1042 .AP... 1 56

Table 1.1: An example of NetFlow data (partially anonymized and with time information removed)
as received from NFDUMP tool [26]. Supplementary derived information, such as packets per
second, average bytes per packet, etc. is not represented in this table. One line corresponds to one
network flow, typical file acquired over 5 minutes on gigabit network can have 1-2 millions of lines.

The high-level view above is further technically enhanced in the next section, where the software
components are presented in higher level of detail, and will be further extended throughout the
report.

1.2.2 Architecture Overview

In this section, we present the high-level overview of the complete system at the level of a single
node, before getting into a mode detailed description of system components and the principles
behind its operation. In Fig. 1.2, we can see that each individual node consists of several subsystems
interacting with each other. Most of the subsystems are implemented as one or more agents, and
all agents communicate solely by the exchange of messages. The whole system is written in Java and
is based on the AGLOBE multi-agent platform [56]. The use of multi-agent paradigm ensures high
robustness and resilience to faults, while the use of AGLOBE ensures high efficiency of processing
and low performance overhead of multi-agent computation.

The functional components of the system are:

– Traffic acquisition layer responsible for reception and preprocessing of NetFlow/IPFIX
data;

– Detection layer responsible for identification of anomalous flows;

– Challenge-based self-monitoring, which is used to evaluate the performance of the detection
layer in the real-time;

– Game-Theoretic Adaptation process, which uses the results of self-monitoring to opti-
mally adapt the system under given circumstances;
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Figure 1.2: Architecture overview of the standard configuration of the CAMNEP system.
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– Event Extraction and Behavior Modeling is a set of agents that converts the suspicious
flows into coherent events and classifies them;

– Results Exportation and Integration is a set of component that ensure that the results
of system operation are accessible for other systems and the end-user;

– Automated Response Components (out of scope of this report) that will use the system
output to prepare the prevention rules for active response to the attacker’s actions;

– Web-Based Visualization (independent), which displays the system results in a standard
web-based interface.

In the following, we will briefly introduce the components and layers of the CAMNEP system, in
order to give the reader a level of understanding sufficient for the comprehension of the effects
that can affect the results of the interaction between the attacker and the IDS (defender). Our
implementation is rather unique by its tight integration between the real-world software and fairly
abstract game-theoretic approaches deployed in the online mode, but this also necessitates deeper
knowledge of the techniques involved.

1.2.3 Traffic Acquisition Layer

The components in this layer are designed to receive the NetFlow data from one or more sources
over a pre-determined period of time. The Traffic Acquisition functionality is fully implemented
inside the NetFeeder agent. This (rather large) agent currently includes the following functional
modules, presented in order of invocation:

– NetFlow collection. In the first stage of processing, the NetFlow sources streaming into
the system have to be identified. For each source, the system needs to evaluate the structure
of NetFlow information provided by the NetFlow source – most often using the Templates
periodically inserted into the UDP stream of NetFlow data. In the case of NetFlow v5, the
processing of the data begins immediately after the reception of first valid NetFlow record.
In the case of NetFlow v9 or IPFIX, the processing starts once the first template record has
been received. The template is required for the transformation of NetFlow into the standard
storage structure used inside the system.

The NetFlow data streams from all sources are directed into a single UDP port (port 3000
is the default value). The system considers the flows received from all sources as equivalent
and does not perform any selection, removal of duplicates or sorting based on the source
information. Liveliness of the source is not verified either – if one of the sources fail to
provide the data in a given time period, this failure is neither reported nor considered in the
subsequent computation.

– DataSet preparation and timing. In the second stage of processing, the system gathers
the data received during one observation period (typically 5 minutes long) and stores them in
a unified data structure. The flows to be stored are determined as the flows received from all
valid sources during the 5-minute window, based on the local clock of the CAMNEP system.
On the other hand, the timestamps included in the NetFlow records are not transformed,
and may fall outside of the particular 5-minute window for a multitude of reasons, including
clock synchronization, buffer timeouts of NetFlow probes and time zone issues. However,
this rarely affects the quality of processing and the timing model based on the local clock
was selected as the most robust for distributed environments. This change presents the
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departure from the past practice, when the CAMNEP core accepted the dataset assembled
and collected by third-party collector software.

The dataset delimitation in time effectively defines one stage of the adversarial plan recogni-
tion game as introduced in Section 3.3 (It also defines the successive single-stage games when
using the alternative problem formulation).

– Challenge insertion implementation. The flows received from the probes are enriched
with the simulated flows inserted by the Challenge (or Incident) agents [44] introduced in
Section 1.2.4.

– Secondary feature computation and storage. Once all flows (both acquired from the
network and simulated) are stored, the system determines the secondary features on the
significant flow subsets, most notably the aggregates and statistical moments for individual
traffic sources (srcIP addresses), individual destinations and other subsets. These features
are subsequently stored in a dedicated structure associated with the dataset containing the
flows and specific features are used to enrich the features of the individual flows.

– Optional sampling of input data. Sampling is employed by the system to handle the situa-
tions when the volume of the monitored traffic exceeds the capacity of the hardware configu-
ration on which the system runs. The system is able to automatically select (see Appendix B)
from several sampling strategies (also described in paper in Appendix B).

– Detection process invocation and liveliness checks are the final responsibility of the
NetFeeder agent. The dataset produced by this agent is sent to all registered detection
agents and the NetFeeder follows its processing in order to possibly delay the sending of the
next dataset should the processing of the previous one had not been finished yet.

1.2.4 Detection Layer Features

The detection layer is the key layer of the system, as it performs the primary identification of
the anomalous flows. It receives the flows assembled by the NetFeeder agent into the dataset and
assigns them the aggregate trustfulness value, according to the opinion of each detection algorithm,
i.e. each flow receives one trustfulness value which places the flow on the scale from normal, 1, to
fully anomalous, 0.

Detection Layer Overview

The Detection layer consists of Detection Agents. These agents are the key elements of the
detection process, as they assign the anomaly/trustfulness values to individual flows. Each of
them is based on one particular anomaly detection method, typically based on existing research in
the network anomaly detection. They (currently) operate in two stages:

– Anomaly detection: Each detection agent is based on one anomaly detection method,
either designed in-house, or based on past published work. The anomaly detection methods
use their model (internal state) and the input - flows in the current dataset - to determine
an immediate anomaly of flows in the dataset. The anomaly detection methods are based on
the following approaches and types of features:

? entropies of flow characteristics for individual source IP addresses [58],

? entropies of flow characteristics for individual destination IP addresses [59],
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? deviation of flow entropies from the PCA-based prediction model of individual sources [32],

? deviation of traffic volumes from the PCA-based prediction for individual major sources [31],

? rapid surges in the number of flows with given characteristics from the individual
sources [20],

? ratios between the number of destination addresses and port numbers for individual
sources [53],

The anomaly values are provided by each agent for all flows in the dataset and are exchanged
between the Detection Agents, so that they can be combined and used as an input for the
update of trust models maintained by each agent.

– Trust modeling: The purpose of the trust modeling [42] as deployed in CAMNEP [43] is to
build a higher quality assessment of the individual flow anomaly, based on the opinions built
in the trust model over time from the anomaly values submitted by all detection agents. All
trust models process identical inputs: the flows from the processed dataset and the anomaly
values submitted by all detection agents. The results are differentiated by the features used
to construct the trust model, built as a set of clusters in the space where the flows are
represented, each cluster centered on one centroid. The trust model of each agent clusters
the traffic according to the characteristics used by the anomaly detection model of the agent
(similarity between the flows). This results in a different composition of clusters between the
agents, as any two flows that may be similar according to the characteristics used by one
agent can be very different to other agent’s models. Once the agents build the characteristic
profiles of behavior, they use the anomaly values provided by the anomaly detection methods
of all agents to progressively determine the appropriate level of trustfulness of each cluster.
This value, accumulated over time, is then used as an individual agent’s assessment of each
flow.

The trust-based algorithm improves the quality of the classification by parallel trust modeling
performed by the detection agents and the adaptive integration of their outputs into the final
trustfulness assessment. The trust modeling inputs are identical for all agents, and the principal
improvement comes from the fact that each of the agents uses different traffic features to define its
feature space and its metrics. Due to these differences, each trust model uses its own criteria to
perform the aggregation of data. The features of each such model are derived from the features that
separate the malicious traffic from the legitimate traffic (because they are defined by an existing
anomaly detection method). Therefore, the attack flows as identified by any individual agent are
typically concentrated in a rather limited part of the feature space, covered by few centroids. If a
group of flows (such as the flows from the single source) falls into the untrusted region in a feature
space of all agents, the trustfulness of the centroids in this region will be consistently low, because
it was accumulated from highly anomalous traffic (Fig. 1.3 left). On the other hand, if only one or
few of the agents identify the traffic as malicious, the flows will likely to be dispersed over many
centroids in the trust models of other agents and will have higher trustfulness (Fig. 1.3 right). This
hypothesis, which explains how does the trust modeling stage improve the false positives rate, was
verified empirically during our experiments: when an agent identifies a particular event as a false
positive, the flows that constitute the event are spread over a relatively high number (more than
20) of centroid-defined clusters, while the attack flows are normally associated with less than 5
centroids.

Trustfulness Aggregation.

The Detection agents provide their trustfulness assessment (conceptually a reputation opinion) to
the aggregation agents. There are several types of the Aggregation agents, created during the past
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Figure 1.3: A peek into the trust model of a detection agent. The flows are displayed as tree
extremities attached to the closest centroid of the trust model. Note that the attack flows are
concentrated next to a single centroid (left), while the normal traffic from legitimate source is
spread over the whole model (right).

projects and improved during the current project:

– The Master Aggregator agent is a highly simplified component that directs the aggregation
process and provides a fallback solution should the dynamic aggregation operator selection
fail or fail to finish in time. In that case, it performs a simple arithmetic average of trust
values submitted by individual Detection agents and this result is used as a detection layer
output.

– One or more Dynamic Aggregator agents contain one or more aggregation operators.
These operators, based on Order-Weighted Averaging [11, 60], identity-weighted averaging
or a combination of both constitutes one possible system output by combining the detection
agent’s trustfulness opinions. The identity-weighted averaging is a fairly straightforward
operation, as it assigns the weights to the trustfulness provided by individual agents in the
system and averages the trustfulness values according to these weights. The Order Weighted
Averaging (OWA) is different, as the weights are not assigned to the individual agents, but to
the order of trustfulness values provided by the individual detection agents. The mechanism
can thus emphasize the lowest or highest trustfulness values or can only use the values from
the middle of the distribution.

The Master Aggregator agent receives the results of aggregation for the flows from the Dynamic
Aggregator agents and uses the game theoretical modeling methods described in this report to
select the aggregation strategy with optimal sensitivity against expected next attacker’s action.

Challenge Insertion

In order to resolve the question which of the aggregation operators prevails, we use the self-
adaptation infrastructure based on the Challenge insertion [54, 44]. We use the term Incident
Provider to denote a dedicated agent that controls the system adaptation by implementing the
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mechanism described in this paper. The Incident Provider creates individual Challenge agents,
each of them representing a specific incident in the past, and these temporary, single purpose
agents interact with the data-provisioning layers of the system in order to insert the flows relative
to the incident into the background traffic and to retrieve and analyze the detection results provided
by the aggregation operators. The results are then reported to the user agent and used to select
the optimal aggregation operator’s result as a system output for the current dataset. Challenge
processor also dynamically determines the number of Challenges to insert into the next dataset,
as we have described earlier [46, 45].

The self-adaptation process (detailed in Fig. 1.2) is based on the insertion of challenges into the
background of network flow data observed by the system. The challenges are represented as
sets of NetFlow records, corresponding to classified incidents observed in the past. These records
generated by individual challenge agents are mixed with the background traffic, so that they cannot
be identified by the detection/aggregation agents. They are processed together with the rest of
the traffic, used to update the anomaly detection mechanism data and trust models of individual
detection agents and are evaluated with the rest of the traffic. Once the processing is completed,
they are re-identified by their respective challenge agents, removed from the user output and the
anomaly attributed to these flows by individual aggregation agents is used to evaluate these agents
and to select the optimal output agent for the current network conditions.

There are two types of challenges. The malicious challenges correspond to known attack types and
the legitimate challenges represent known instances of legitimate events that tend to be misclassified
as anomalous. We further divide malicious challenges into classes according to the type of the
attack, such as fingerprinting/vertical scan, horizontal scan, brute force password cracking, etc.
With respect to each of these attack classes, we characterize each aggregation agent by a probability
distribution, empirically estimated from the continuous anomaly values attributed to the challenges
from this class, as we can see in Fig. 1.4. We also define a single additional distribution for all
legitimate challenges.

System response to challenges drawn from various attack classes or representing the legitimate
behavior allows to estimate the reaction of the system to the modeled attacks. Specifically, the
challenges are used to establish detection rates for each attack class and the false positive rate
for the system as a whole. These crucial values are then used in the dynamic adaptation process
described in the next section.

It shall be noted that the self-adaptive features of challenge insertion, which determine the number
of challenges to insert into each specific dataset do not depend on the current adaptation method
used, but are based on the trust-based formalism introduced in [46, 45]. This allows the system
to directly compare the results of various adaptation methods without being concerned with the
meta-effects of the adaptation.

In Section 2.1, we present a novel approach to Challenge creation, based on the combination of
approaches from automated planning with more traditional security techniques. This allows us to
reach higher fidelity in system models and to evaluate the system capabilities more realistically.

1.2.5 Dynamic Selection of Detection (Aggregation) Strategy

In this section, we are going to describe the existing approaches to strategy selection in the CAM-
NEP system.

– Trust-Based aggregation operator selection (Fig. 1.5), presented in [45] uses the FIRE trust
model applied to the results of challenge insertion to identify the operator that achieves the
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Figure 1.4: Distribution of challenges on the background of the anomalies attributed to the traffic
from one traffic observation interval. The distribution of anomaly of the malicious challenges (from
one class) is on the left side of the graph, while the legitimate events are on the right.

best separation of malicious and legitimate challenges. For each aggregation operator, we
maintain a trust model based on the individual trust dimension of the FIRE model [41], which
is set up to emphasize the last 5 datasets. On each dataset, we determine the normalized
distance between the average trustfulness attributed to the legitimate challenges (borderline
cases representing typical false positives) and the average trustfulness attributed to the mali-
cious challenges (separated into attack classes) and the normalized distance is used as a trust
observation for the FIRE individual trust model of the respective aggregation operator. As
mentioned earlier, the trust-based challenge evaluation is also used to regulate the number of
challenges inserted into the network traffic, regardless of the method used for the adaptation.

– Single-Stage Game based selection using the Max-Min strategy selection algorithm (Fig. 1.6).
Unlike in the previous case, where we only consider the problem from the defender’s per-
spective, in the Max-Min case we analyze the possible strategies of the opponent and their
likely impact on the defender’s utility. Then, CAMNEP, playing the role of the defender,
determines which aggregation strategy to adopt by identifying the worst possible outcome
of each defender’s strategy (Min) and then selecting the strategy which maximizes the worst
outcome (Max-Min). This approach is well suited for the situations where the opponent’s
gain is equal to the defender’s loss, i.e. zero-sum games [36], but it doesn’t use any available
information about the opponent’s intent or immediate payoffs. The utility function of the
defender is constructed using the inputs from the challenge-based self-monitoring. The game
model use for adaptation is described in Section 3.2.

– Single-Stage Game based selection playing the Nash Equilibria strategy (Fig. 1.7). The
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Figure 1.5: Trust-Based Adaptation Overview.

Figure 1.6: Adaptation based on a single-stage game solved by the concept of Max-Min

underlying interaction model is the same as in the previous case, but the use of Nash equilibria
as a strategy requires the defender (CAMNEP) to reason about the utility function of the
opponent. It also requires the opponent to reason about the internal state and the utility
function of the IDS. Playing Nash equilibria should deliver slightly better results than the
Max-Min approach, as it assumes that the attacker is rational and some of the possible
”worst” strategies can be eliminated from consideration. However, this mostly applies on
larger spaces, and the experimental results in Section 3.2 suggest that both methods result
in similar payoffs for the defender. Compared to direct trust-based aggregation selection,
the game-theoretic strategies result in safer selection of the aggregation strategy (operator)
which is more difficult to predict by the opponent.

– Global Regret Minimization, presented in detail in Appendix B of this report, uses a
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Figure 1.7: Adaptation based on a single-stage game solved by the concept of Nash Equilibria

more elaborate model of the attacker-defender interaction. The game is structured as a
sequence of identical two-player games, but the choice of the strategy is performed using
external regret minimization. In the Global case, we optimize two parameters at once, with
full synchronization and considering them as a single strategy drawn from the Cartesian
product of two sub-strategies: (i) sampling strategy selection and (ii) aggregation operation
selection. This scenario has been implemented for research and experimentation purposes
only – as we use the external regret minimization in both cases, the system needs to perform
all sampling strategies at once and to evaluate the response of all aggregation operation to
sampled challenges in all sampling variants, making such installation unappealing for obvious
efficiency reasons. This problem is addressed by the alternative method described below.

– Concurrent, Two Layer Regret Minimization, which is also presented in Appendix B
uses an alternative formulation of the optimization problem, which imposes less constraints
on system components. The selection of two strategies is performed independently, by two
separate processes running in two distinct layers with no explicit coordination regarding the
selected strategy. Obviously, in this setup, the selection of sampling strategy significantly af-
fects the performance of individual detection algorithms and subsequently also the optimality
of aggregation strategies.

The baseline approaches presented here will be complemented by the approach based on adversarial
plan recognition game, which will be introduced in Section 3.3.

1.2.6 Event Creation and Characterization

The Detection layer processes the dataset provided by the Data Acquisition layer and its processing,
including the adaptation step, results in a trustfulness assignment which divides the traffic into
the normal and anomalous classes of flows. The flows are then processed by the Event Provider
agent, the core of the Event Creation and Characterization components of the system.
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Event Provider cooperates with the Incident Type Agents to transform the anomalous flows into
coherent events with appropriate symbolic description. The process of Event Creation and clas-
sification is not unidirectional, but is based on several stages involving event nucleus creation,
pre-classification, event fusion and final event classification. The details of this process are pre-
sented in Section 2.2.
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Chapter 2

Modelling Attacker and Defender
in CAMNEP

2.1 Attacker Simulation

As we have described above, the CAMNEP system is able to adapt to the network situation using
the challenge insertion process. This process influences the selection of aggregation operator as
well as the threshold dividing malicious and legitimate flows. Therefore, the challenge insertion
process is crucial for the system and affects performance of the whole intrusion detection process.
The inserted challenge flows are created from the captures that are selected randomly from the
database, according to their type and security policy defined by the administrator. This implies
that selected challenges are independent of each other and to the current network situation. With
respect to these properties, challenges can be used well to simulate attacks on the monitored
network.

Although the challenge insertion mechanism described so far significantly improves the adaptation
capability of CAMNEP, it is limited in several ways. First, it cannot simulate persistent or strate-
gically behaving attackers following pre-defined attack plans to achieve their goals. Second, the
database of challenge flows contains captures of attacks without any background noise typical for
the attackers, who use other network services during the attack. Finally, there is a need for the
system to be able to simulate legitimate behavior of servers difficult for the intrusion detection
systems. Simulation of such servers needs the insertion process to support insertion of long periods
of constant behavior. Moreover the challenge flows used so far do not contain neither replies of the
attacked machines nor side effects of the attack actions (e.g. DNS resolving during SSH bruteforce
or scans).

To address all these problems we need the challenge insertion process and the challenge flows to be
as realistic as possible. Hence, instead of inserting randomly selected attack flows of various types
into the system’s input we need more realistic simulation of the attacker.

Better challenge selection and insertion process will improve the accuracy of the system in many
ways, the most important ones are:

– Using more realistic simulation of an attacker improves the estimates of detection rates of
individual detection algorithms and aggregation operators.
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– Improved estimates of false positive/false negative rates of different aggregation operators
decreases the probability of selecting sub-optimal aggregation operator for the current con-
figuration of the system and the state of background traffic.

– Choosing the optimal aggregation operator increases the accuracy and robustness of the
CAMNEP.

In order to bring the inserted challenges closer to reality, the challenges are no longer selected
randomly, but they follow realistic attack plans. The attack plans model strategically behaving
opponents with realistic goals and appropriate actions leading them to the predefined goal. The
attack plans (can be static or dynamic) are based on Planning Domain Definition Language [23]
(PDDL) described in Section 2.1.2, which allows us to efficiently define the problem domain contain-
ing available actions (described in Section 2.1.3) of the attacker together with their preconditions
and their effects, and the set of possible attacker’s goals (described in Section 2.1.3) such as gaining
access to some machines, distribution of malware, planting denial of service, etc.

Attack plans, which can be either static or created on-the-fly by the planner described in Section
2.1.3, enable us to simulate real attackers progressing towards their goals. These plans are also
useful to simulate legitimate behavior of various problematic servers such as proxy server, DNS
server, etc.

2.1.1 Architecture

Plan generation is handled by the Plan Provider agent, which is responsible for the creation of
attack plans in PDDL format and for the creation of new Plan Executor agents. The philosophy
behind is the same as the philosophy behind the Incident provider and the Challenge agents.

A new attack plan is initiated by the Plan Provider agent either generating new plan in PDDL
format or loading static PDDL plan from the database. The choice of the static plan, or the type of
generated plan, depends on the state of monitored network and number of running Plan Executor
agents. After the plan is created, the Plan Provider agent creates new Plan Executor agent, which
takes care of the plan execution and evaluation.

The Plan Executor agent is responsible for generating attack flows according to the plan described
in PDDL language. It does so in stages, first breaking the plan into individual actions followed by
generating flows implementing individual actions. The Executor agent also takes care about nifty
details such as setting proper time delays between actions, adjusting IP addresses to be consistent
within the plan yet non-conflicting with IPs in the monitored network, etc. The generated flows
are sent to the NetFeeder agent that mixes them with the real traffic. The Plan Executor agent
also observes the output of the system and gives feedback to the Dynamic Aggregator agent about
performance of aggregation operators in the exactly same way as it is done by Challenge agents.

2.1.2 PDDL

PDDL (Planning Domain Definition Language) attempts to standardize planning domain and
problem description languages. Although it was mainly developed for the 1998/2000 International
Planning Competitions, it is nowadays supported by most available planners.

PDDL task consist of several components:
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Figure 2.1: Challenge insertion architecture of both random challenge process and plan execution
process.

– Objects are all items of interest in the world. In our case the objects are all the information
that an attacker should possess or obtain during the attack.

– Predicates are properties of objects. In attacker planning domain the predicates specify
the knowledge that attacker needs in order to perform some action (in our case an attack).

– Initial state is the initial state of the world, in our case it is the knowledge the attacker has
before starting the attack on target network.

– Goal specification is the definition of the desired goal.

– Available actions represents actions that can change the state of the world. In our case
the actions are different types of network attacks. By means of these actions, an attacker
gains new knowledge about the attacked network needed to pave his road towards the goal.

The problem in the PDDL is specified by

– Domain specification containing all actions available in current domain together with their
preconditions,

– and Problem specification defining the problem to be solved. This specification contains
all objects, initial state of the world, and desired goal.

The usage of PDDL language provides us formalism to describe domain, action and problems which
could be used for dynamic generation of attacker’s plans.
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2.1.3 Attacker Actions

Each PDDL action is identified by the name corresponding to the groovy script, list of parame-
ters, preconditions, and effect of the action. For example the Action 1 describes horizontal scan
parameterized by the source IP, destination IP, scanned port, and number of flows. The predicate
DUMMY PREDICATE means that the attacker does not need any knowledge to execute this action.
When attacker executes this action, he gains the knowledge (predicate) SUBNET PORT KNOWLEDGE

and he can use this knowledge to progress in his plan. More examples of attacker actions are brute
force cracking of SSH password (Action 3) and upload of malware (Action 4) in Section 2.1.3.

So far we have specified more than 30 different actions in our attack planning domain. There
are exploratory actions such as different types of scans, attacks to particular services like SSH
bruteforcing, various rootkit usage, simulations of P2P networks and skype supernodes. Besides
attacks, we created simulation of legitimate actions like web use, ftp use, dns server, proxy server
etc., which are important to simulate legitimate entities on the network.

Action 1 Example of horizontal scan action

(:action SCAN HORIZONTAL
:parameters (?FLOWCOUNT - INT ?SRCIP - SRCIP ?SUBNET - SUBNET ?PORT - PORT)
:precondition (DUMMY PREDICATE)
:effect (SUBNET PORT KNOWLEDGE ?SUBNET ?PORT)

Action 2 Example of vertical scan action.

(:action SCAN VERTICAL
:parameters (?FLOWCOUNT - INT ?SRCIP - SRCIP ?DSTIP DSTIP)
:precondition (IP KNOWLEDGE ?DSTIP)
:effect (and(ALL PORT KNOWLEDGE ?DSTIP)))

Action 3 Example of SSH bruteforce attack action.

(:action SSH BRUTEFORCE
:parameters (?SRCIP - SRCIP ?DSTIP - DSTIP)
:precondition (PORT KNOWLEDGE ?DSTIP SSH PORT)
:effect (SSH PASSWORD KNOWLEDGE ?DSTIP))

There are two possibilities, how to create flows from actions: either load the attack flows from the
database or to generate them according to the model.

For the first approach, we have created a large database of attacks that have been isolated from
observations of several networks by the CAMNEP system. Presently, we have more than 400
captures of various attacks of about 20 different types. These attack captures can be either used
as stand-alone attacks, as in the original CAMNEP system, or as one action in a larger attack plan
generated by the Plan Executor agent.

For the latter, we have created several models of actions performed by attackers. These models
are based on observations of effects of real attackers on our university network and their influence
on the network characteristics. Using these models we are able to create scripts generating flows
representing attacks together with all side-effects (see an example on Figure 2.2).

Both presented approaches (loading of attack flows from database or generation of attack flows
according to the model) can be used by actions defined in the PDDL. Every PDDL action has
corresponding script that can either load appropriate action from the database or call attack flow-
building script that creates flows that will be inserted into the CAMNEP to execute the action.
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Action 4 Example of malware upload action.

(:action MALWARE UPLOAD
:parameters (?SRCIP - SRCIP ?DSTIP - DSTIP)
:precondition (SSH PASSWORD KNOWLEDGE ?DSTIP)
:effect (MALWARE PROPAGATION ?DSTIP))

Outgoing communication:
Duration Protocol Src IP Dst IP Src Port Dst Port Flags Tos Packets Bytes Flows

∼ 0 UDP server dns client 53 any ◦ ◦ ◦ ◦ ◦◦ 0 1 〈118; 328〉 1

...
2010-10-22 11:38:13.684 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:50593 ...... 0 1 118 1
2010-10-22 11:38:13.845 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:54452 ...... 0 1 118 1
2010-10-22 11:38:14.398 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:51980 ...... 0 1 118 1
2010-10-22 11:38:14.559 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:56525 ...... 0 1 118 1
2010-10-22 11:38:14.718 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:49533 ...... 0 1 118 1
2010-10-22 11:38:14.879 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:55246 ...... 0 1 118 1
2010-10-22 11:38:15.040 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:59087 ...... 0 1 118 1
2010-10-22 11:38:15.199 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:57793 ...... 0 1 118 1
2010-10-22 11:38:15.359 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:63011 ...... 0 1 118 1
2010-10-22 11:38:15.521 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:59321 ...... 0 1 118 1
2010-10-22 11:38:15.682 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:55698 ...... 0 1 118 1
2010-10-22 11:38:15.842 0.000 UDP 147.32.84.131:53 -> 147.32.80.9:60765 ...... 0 1 118 1
...

Incoming communication:
Duration Protocol Src IP Dst IP Src Port Dst Port Flags Tos Packets Bytes Flows

∼ 0 UDP client server any 53 ◦ ◦ ◦ ◦ ◦◦ 0 1 〈101; 600〉 1

...
2010-10-22 11:38:16.211 0.000 UDP 147.32.80.9:51353 -> 147.32.84.131:53 ...... 0 1 101 1
2010-10-22 11:38:16.232 0.000 UDP 147.32.80.9:59351 -> 147.32.84.131:53 ...... 0 1 300 1
2010-10-22 11:38:16.250 0.000 UDP 147.32.80.9:54889 -> 147.32.84.131:53 ...... 0 1 300 1
2010-10-22 11:38:16.270 0.000 UDP 147.32.80.9:59789 -> 147.32.84.131:53 ...... 0 1 300 1
2010-10-22 11:38:16.290 0.000 UDP 147.32.80.9:60848 -> 147.32.84.131:53 ...... 0 1 300 1
2010-10-22 11:38:16.311 0.000 UDP 147.32.80.9:50489 -> 147.32.84.131:53 ...... 0 1 300 1
2010-10-22 11:38:16.330 0.000 UDP 147.32.80.9:50264 -> 147.32.84.131:53 ...... 0 1 300 1
2010-10-22 11:38:16.350 0.000 UDP 147.32.80.9:49401 -> 147.32.84.131:53 ...... 0 1 300 1
2010-10-22 11:38:16.370 0.000 UDP 147.32.80.9:58324 -> 147.32.84.131:53 ...... 0 1 179 1
...

Figure 2.2: An example of a transfer of 4KB file over SSH by using DNS tunnel
.

This enables us to create very large variety of actions by combining various captures from database
and flow-building scripts. This is the key feature for the insertion of both requests and responses
and also side-effects of some types of attacks.

Attacker Goals

The previous section describes actions available to attacker in order to reach goals, which are
described here. The PDDL notation is again used to define so called problems representing high-
level specification of attacker’s desired goals. So far, we have defined approximately 10 basic goals.

Problem 5 shows an an example of a problem definition in PDDL language — the propagation of
a malware. Each problem consists of a domain specification, an initial state of the world, and a
goal to be achieved. Additionally we can specify objects (such as ?SRCIP or ?DSTIP) with type
specification (e.g. ?SRCIP - SRCIP) serving as constants in the static plans.

The initial state specifies attacker’s prior knowledge about the target network. Using these pre-
conditions enable the specification of PDDL problems of attackers either without any knowledge
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about the system or with some specified set of information about the target network.

Problem 5 Example of malware propagation problem.

(define (problem MALWARE PROPAGATION)
(:domain INCIDENT DOMAIN)
(:requirements :typing)
(:objects ?SRCIP - SRCIP ?DSTIP - DSTIP)
(:init (DUMMY PREDICATE))
(:goal (and (MALWARE PROPAGATION DSTIP))))

Attacker Plans

Final step in realistic attacker’s model creation is to generate an execution plan of the attack. As
was discussed above, there are two ways to do this. First, we can use static plans representing the
most common attack plans or simulating the long-term behavior of known servers. Second, we can
use the planner supporting input in PDDL format to generate new plans according to specified
domain problem. The planner is a very simple since the shortest possible plan is not needed.

It is important to point out that we had extended plan syntax for the static plans to be able to
specify objects of interest. We added parameter specifying if the plan should be repeated without
end (endless=true). Additionally we extended the typing of the objects allowing more detailed
specification. From plan presented in Problem 5 could be seen both previously discussed extensions
– for example object ?SrcIP was specified as IP address from range 0.32.124.0/26. We have also
added a delay between actions that can be manually specified or randomized as shown in the
example.

Plan 6 Example of a plan (there can be many) solving Problem 5 automatically generated by the
planner.

(!SSHAccessAttackS endless=false)
(?SrcIP=(IP)0.38.124.0/26)
(?DstIP=(IP)0.32.84.0/26)
(?DstNetwork=(NETWORK)0.32.84.0/24)

(scan horizontal SrcIP DstNetwork LARGE)
(delay RANDOM(1000,200000))
(scan vertical SrcIP DstIP SMALL)
(delay RANDOM(1000,200000))
(ssh bruteforce SrcIP DstIP LARGE)
(delay RANDOM(1000,200000))
(malware upload SrcIP DstIP)

2.2 Events Creation

This section describes a system transforming the unstructured flow labeled by trustfulness values
into a set of coherent, well classified events. These events can be later recognized as elements of
attacker’s plan enabling to guess the attacker’s goals and reconfigure the system approximately.
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The departure from the prior work is twofold. First, we are no longer interested in mere detection
of malicious flows, but in the recognition of attacker’s actions, which are later used to infer his
plans and goals. Second, the adaptation methods of the Detection layer (outlined in Section 1.2.4)
and Section 1.2.5 do not longer rely only on the feedback provided by the challenges, but also and
the results of the Game Theoretic layer (Chapter 3), for which we need correct recognition and
characterization of opponent’s action and plans.

The anomalous flows from the network traffic are grouped into Events — sets of flows according
to their own characteristics. An event represents symbolic description of a particular network
activity (service, behavior) with respect to traffic sources, destinations, and other features. In this
section, we describe the process of extracting events from corresponding network traffic and how
the classification is assigned to them. The Events are then used as Actions in the model described
in Section 2.3. The transcription between Events and Actions is described in Section 2.2.7.

2.2.1 Events Extraction and Clustering

To create an event, we use similarity metrics between individual flows in multi-dimensional feature
space. Each flow is identified by five feature values like source and destination IP address, source
and destination port and protocol. Beside of these five basic features, each flow contains additional
information about the connection, e.g. number of bytes and packets transferred. These all features
form the above-mentioned multi-dimensional feature space, and all flows are placed to this space
to create clusters of similar entities during multi-staged clustering process.

Flows Pre-Selection

As the first step in the events extraction process, we select the baseline set of flows from whole
incoming network traffic that will serve as an input data. Because of the fact that the system
concentrates on the malicious behaviors on the network, this input pre-selection skips trustworthy
connections or connections with no chance of be part of an event. That means, all flows that
are not considered by the system to be legitimate enter the events creation process. The exact
pre-selection criteria are described as follows:

Flow ϕi is selected into the input baseline set if and only if:

1. trustfulness of the flow is less than the trustfulness of legitimate threshold, and

2. the total number of flows or bytes (from the whole traffic) with the same source IP address
(or destination IP address) as the evaluating flow is greater or equal to threshold describing
minimal number of flows or bytes per one event.

First condition selects flows that are considered to be malicious or suspicious by the system, the
second one guarantees that flows with no chance of be part of an event are not processed further.
The meaning of this condition will be explained later in this section, because it is closely related
with the event extraction process itself.

Reducing the total number of processed flows done by the pre-selection also alleviates compu-
tational requirements of the event creation process. The detailed information about the event
selection process is described in Section 2.2.6.
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Creating Elementary Clusters

This first stage of the clustering forms elementary clusters describing elementary network behaviors.

Once a flow passes the flow pre-selection procedure, it is placed into the multi-dimensional feature
space as a flow-cluster (denoted as φfi ) together with the rest of already processed flows. The
position of a flow-cluster in this space is based on concrete feature values of the processed flow.

The flow-clusters are grouped to elementary clusters (denoted as φej – where flow-cluster φfj is the
former flow-cluster). The distance between a flow-cluster and an elementary cluster is defined by
the similarity metrics.

Before we introduce the similarity metrics, we define bytes similarity condition which we use in
the definition of the similarity metrics itself.

Bytes similarity condition for a flow-cluster φfi of the flow ϕi and an elementary-cluster φej is
defined as:

| bytes(φfi )− avgBytes(φej) | ≤ min
(
bytes(φfi ), avgBytes(φej)

)
,

where bytes(φfi ) denotes number of bytes of the flow-cluster φfi (which is in fact number of bytes
of flow ϕi), and avgBytes(φej) denotes the average value of number of bytes computed from all
flow-clusters already in the elementary cluster φej .

As you can see, the bytes similarity condition depends on the size of its input values, the larger
are the inputs, the greater difference is accepted. The binary similarity metrics used in this phase
of clustering can be described as follows:

The flow-cluster φfi of the flow ϕi can be added to elementary-cluster φej if and only if both clusters
satisfy bytes similarity condition, have the same protocol and satisfy at least one of the following
conditions:

– have the same source IP address and source port

– have the same source IP address and destination port

– have the same destination IP address and source port

– have the same destination IP address and destination port

If there is no similar elementary-cluster found, the flow-cluster φfi creates new (its own) elementary-
cluster φei .

Event Clusters

The second stage of the clustering process groups elementary clusters into larger cluster entities
denoted as event clusters to reveal larger network services or other network behavior. The idea
behind this clustering stage is in the fact that the elementary clusters are not always sufficient to
describe some services and form only part of them.

An example of such network behavior can be data transfers from one host to another – there is
great variability in number of bytes, but all transfers represent the same network behavior. Another
example could be web services or peer-to-peer traffic.
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Besides these cases, the aggregation of smaller clusters can reveal the true nature of present network
behavior. The aggregation process itself is based on a similarity function defined as follows.

Two elementary clusters are similar if and only if they have the same protocol and one of the
following conditions is satisfied:

– both clusters have the same average value of number of bytes,

– or both clusters φei and φej have the same source port (or destination port) and general bytes
similarity condition is satisfied:

| avgBytes(φei )− avgBytes(φej) | ≤ k ·min
(
avgBytes(φei ), avgBytes(φ

e
j)
)
,

where k > 1 is a predefined parameter (in our implementation k = 100).

The above-mentioned conditions describe the rules that are used to group similar elementary cluster
into event clusters. The event clusters represent second-stage clustering output and can be seen
as individual network events. Before the final (third) clustering process, the system first assigns
classification to events in order to gain some additional knowledge and thus to increase the event
feature space.

2.2.2 Events Classification

This phase of the events creation process provides classification data for a set of events. Classifi-
cation data consist of:

1. Description of the behavior that the event represents, i.e. ”dns tunnel”.

2. Severity level of the behavior, on the scale from 0 (least severe) to 10 (most severe).

3. The classification type: generic, specific, or white-list.

4. Measure of the system’s confidence in the above.

CNP Auction

The classification of a set of events is provided by running an one-stage auction. The auction is
implemented using the Contract Net Protocol (CNP) as follows:

1. The Events Provider agent initiates the auction by sending the set of unclassified events to
the Incident Type agents.

2. Each Incident Type agent proposes classification data for each event in the set and sends it
back to the Events Provider agent.

3. Upon receiving from all Incident Type agents, or a timeout, the Events Provider agent selects,
for each event, the classification data that contain the highest-ranking type value and the
highest confidence. This classification data then becomes the resulting classification data for
the event.
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4. The Events Provider agent sends the results of the auction, including all received proposals,
back again to all Incident Type agents.

5. The Incident Type agents recognize the ranking of their proposal and can modify their
internal state (e.g. hypothesis values) accordingly.

6. The auction is finished.

Minimum Confidence Threshold

After the auction is finished, the confidence value of the classification is inspected. If this value is
lower than a pre-set threshold, an “unknown” classification with severity level 5 is used instead.

Currently this threshold is exactly zero, that is, if at least one Incident Type agent provides a
classification proposal with non-zero confidence, then the classification cannot become “unknown”.
Only if no Incident Type agent can provide a classification, then the event becomes classified as
“unknown”.

Modifying the threshold sets a trade-off between providing only those classifications where the
system is more confident and leaving the rest as “unknown”, and between providing all possible
hints at classifications, albeit with lesser confidence.

Classification Types

The type of the classification is included in the classification data. The types provide a ranking
mechanism, i.e. one further dimension to the confidence value. The generic classification proposals
will always be inferior to specific or white-list proposals, and the specific proposals will be inferior
to white-list proposals.

1. A generic classification type describes a classification that covers a wide range of behaviors.
For example, communication to port 80/TCP can be classified as generic http request; com-
munication with large number of requests to the same machine, but different ports, can be
classified as generic port scan-like behavior.

2. A specific classification type is used, where the behavior is defined precisely. For example,
generic port scan-like behavior with TCP protocol and exactly 40 bytes per flow can be
classified as a specific port scan.

3. A white-list classification type is used when the CAMNEP operator explicitly wishes to
not report certain types of behavior. As there are no Incident Type agents providing this
classification type by default, they must be configured manually.

2.2.3 Incident Type agents

An Incident Type agent is responsible for providing a proposal on what the event could be classified
as. For each processed data-set, the Incident Type agent is provided with the full set of events (i.e.
sets of clustered flows), and also the results of each auction evaluation (i.e. what other agents said
about the events, who won the auction). The Incident Type agent is free to use and/or store all
this information to provide the best classification for the events.
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Currently, two types of Incident Type agents are employed: the stateless agents and the stateful
service-monitoring agents.

Stateless Incident Type agents

These agents provide their classification proposal by using a filter-matching mechanism on each
event. The classification data is pre-configured, with the exception of the confidence value, which
reflects the match quality of the configured filter.

The filter is a sequence of rules providing constrains for the behavior represented by the agent.
Using the examples from above, a very simple rule could be a constraint on the communication to
TCP port 80. For this rule, two matching strategies can be used:

1. Boolean: the rule matches if and only if all flows have destination port 80 and TCP protocol.

2. Fuzzy: the rule match value is proportional to the number of flows in the event that contain
these features.

Currently, both strategies are supported and useful for various types of behavior.

The rule specification can include wide range of constrains:

1. Flow features (addresses, ports, protocols, sizes).

2. Number of flows in the event.

3. Statistics over the features (number of distinct values, entropies, averages).

When multiple (n) rules are used in the filter, the match quality of the filter is a product of

individual rule match qualities: Q(Filter) =
∏n
i=1Q

(Rule)
i .

2.2.4 Stateful Service-Monitoring Incident Type agents

The Stateful Incident Type agents (SITA) are more complex than the stateless version. SITAs
are also defined by the static filter specifications as stateless agents, but unlike them, stateful
agents maintain their own models of network traffic services (each agent models one service) giving
them awareness of the current network state from the long term perspective. In this section,
we describe the details of SITA modeling process and show our approach of modeling individual
network services.

As stated above, each SITA is defined by static filter specification described in Section 2.2.3 de-
scribing the type of service, its properties, purpose, and characteristics. It is important to point
out that each SITA models only one particular type of network service. From this reason it uses
information from events that match only this predefined filter specification and other events are
not considered.

From each event (that positively matches the filter) the SITA extracts source(s) of this event
(which is the combination of source IP address and source port) and feature values, such as set of
destination IP addresses, number of flows, etc. SITA maintains a separate model for each source
that has been extracted from accepted events. This model consists of two types of information:
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1. modeled feature space

2. hypothesis value

Modeled Feature Space

To model the event sources, we use several features like:

– set of destination IP addresses to model the address space of each source,

– number of flows or bytes to model the traffic volumes.

For example, model fit in address space is based on distinguishing between three degrees of com-
munication:

– Private - modeled source communicates with single host

– LAN - modeled source communicates within single A-class subnet with limited number of
targets

– Internet - modeled source has no communication restrictions

By maintaining a set of targeted hosts, SITA is able to detect any changes in degree of communi-
cation of each modeled event source.

SITA uses these feature values to compute a similarity between an event and existing model of
feature space of the corresponding source(s) presented in this event. We will call this similarity
between an event and corresponding SITA model as model fit ∈ [0, 1] (unlike event match, which
is the similarity between an event and SITA static filter).

The model is used to determine the difference between behavior tendencies of the source through
the time and the actual event, which exhibits some certain degree of anomaly (or degree of expect-
edness).

Hypothesis Value

Beside modeled feature space, each individual model contains also hypothesis value ∈ [0, 1], which
describes the belief that corresponding source really uses SITA’s service or behavior (e.g. if SITA
represents a web server, the hypothesis values quantify its belief that modeled sources are truly
web servers). We use sequential hypothesis testing mechanism for update (where each incoming
event modifies the hypothesis values of its sources), and there is also slight decrease in time when
no event of that source occurs.

When SITA inserts new source into its model, the initial hypothesis value is set to 0.5. As system
receives new events, this value changes according to the simple principles.

Hypothesis value of a source from an event:

– is increased if and only if SITA wins this event in the auction
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– is decreased if and only if SITA send a bid and lost in the auction

– is slightly decreased in time (per dataset)

In case of more increases (or decreases) per one dataset, the first change is applied by multiplying
current hypothesis value with rate c1 ∈ [1, 2] (or c1 ∈ [0, 1]), but the second change is applied by
multiplying already changed value with rate of smaller impact c2 ∈ [1, c1) (or c2 ∈ [c1, 1]).

State diagram of SITA modeling process is illustrated on Figure 2.3.

Unknown

New

 Service recognized

Modeled

 Hypothesis < minimum

 Hypothesis >= minimum

Figure 2.3: State diagram of Stateful Incident Type agent modeling process.

Classification bid

In this Section, we summarize the whole process of event classification by using Stateful Incident
Type agents. The event classification bid for the auction is computed from three different values:

1. quality of match with predefined static filter specification

2. size of model fit with corresponding inner model of feature space

3. size of hypothesis value

The whole SITA classification process can be described in the following steps:

1. SITA receives set of events and performs static filter specification match, where each event
is compared with predefined filter describing SITA’s specification. Only events with positive
match are processed further.
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2. From each event, the algorithm extracts event sources and computes model fit to determine
the deviation from modeled long term behavior of the sources. In case of more sources
presented in the event, the algorithm selects the minimal model fit to emphasize unexpected
behavior.

3. The algorithm combines model fit with current hypothesis value to determine final bid offer.
In our implementation we use 60% for the model fit and 40% for the hypothesis value. The
final bid is sent back to Events Provider.

4. Once the auction is complete, the results are sent back to SITA to perform an update of both
hypothesis values and modeled feature space.

2.2.5 Classification Clustering

This phase is the last in the events creation process. It is responsible for clustering events using
all available information, specifically the event classification.

An important concept that can be derived from the classification is the originator of the behavior.

If the event is classified as request, then the originator is the set of source addresses in the event.
If the event is classified as a response to a previous request, then the originator is the set of the
destination addresses in the event. The specifics of what is a request and what is a response
are described in the earlier sections. Note though, that a response to a request event does not
necessarily require that the request event has been seen before.

The clustering based on classifications considers any number of events to be part of the same
behavior if and only if they have the same classification and originator. Such events are joined
together into a set of flows that is then presented as one larger event. If at least one of these joined
events was previously considered as malicious (i.e. its flows were in the malicious zone of trust),
then the larger event is also considered as malicious.

2.2.6 Events selection process

The events selection process is responsible for filtering a set of events with regard to a qual-
ity/quantity trade-off. The resulting set is used as the system output for automatic reporting,
GUI display, etc.

Given a set of flows observed in traffic, the trust value for each flow is determined in the detection
layer, and the set is then divided into three zones – malicious, neutral, and legitimate. The events
creation process will take into consideration all flows from the malicious and neutral zones. The
full output from these zones typically contains hundreds of events, which is too many to report for
each data-set (typically 5 minutes worth of traffic).

Parameters

There are many parameters affecting the trade-off between the quality, the quantity, and the
minimum event size. These parameters can be used to fine-tune the output of the algorithm,
namely:

1. Which events are considered important?
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2. How important is the fullness of the automated classification with regard to signal to noise
ratio?

3. What amount of traffic is considered negligible?

Events quality For each event, we can establish an estimated information value that the event
in question provides to the human operator. This information value, averaged over a set of events,
represents the quality of the set: Q =

∑n
i=1 Vi/n.

Currently the value Vi is defined as binary value, i.e. the event is important or not.

The malicious zone is likely to contain many true negatives (malicious flows classified as malicious).
Not including events from this zone imposes the risk of generating false negatives. The events in
this zone are implicitly regarded as important, i.e. information value for events in this zone is
Vi = 1.

The neutral zone is likely to contain many false positives (legitimate flows classified as malicious),
i.e. noise, that provides little information value. Including all events that have been created by the
events creator process is likely to yield a set with poor quality. To avert this, we define an event
in this zone as important only if it satisfies one or both of the following conditions:

1. It represents a behavior that is classified as severe, i.e. severity > 5 on the scale from 0 to
10.

2. It represents a significant portion of the traffic, i.e. the minimum size thresholds (see below)
are exceeded by a factor of 10.

In our experiments these conditions serve well to penalize false positives enough to be excluded
from the selected set of events.

The legitimate zone is unlikely to contain true positives. Classification of legitimate traffic is only
of minor concern for the system, which is why the legitimate zone is exempted from the events
creation process altogether.

Events quantity As mentioned in the previous paragraph, including too many events will result
in poor quality. On the other hand, including too few events would result in large amounts of non-
categorized traffic, reducing the usefulness of the events system as whole.

In our experiments, we sought the amount of traffic that should be categorized, which, when
exceeded, results in rapidly diminishing quality of the resulting events set.

The value has been determined to be 98% of the number of malicious flows in the traffic and 90%
of the number of bytes summed from all malicious flows included in the traffic. In other words, we
can afford not to classify at most 2% of the malicious traffic, flows-wise and at most 10% byte-wise,
without significant degradation of the system usefulness.

These ratios can be adjusted arbitrarily, resulting in more or less emphasis on fullness of the
automatic classification of the traffic. We’ll call this the ”at most X% of malicious traffic not
classified rule”.
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Minimum size of an event The ”at most X% of malicious traffic not classified rule” from the
events quantity section, if followed rigorously, could theoretically result in selection of a very large
number of events that contain very few flows or very few bytes. These events typically represent
either stray flows that haven’t been linked to any other event (i.e. behavior on the network) by
the events creation process, or they represent an attempt to overload the system with noise.

We regard these as waste – inclusion of large numbers of such small events would provide very little
information to the operator. They would severely reduce the quality of the selected set of events.
We apply a thresholding technique, i.e. we seek to include only events that meet a minimum size
requirement.

Again, the thresholds can be set to arbitrary values, resulting in various levels of compromise
between full classification and the signal to noise ratio of the classification.

Through experimentation we’ve arrived at the minimum volume threshold to be statically 20
kilobytes in size, which is enough to catch all but the smallest stray data transfers. The minimum
flows threshold is dynamic with regard to the number of all flows processed (i.e. in the whole
traffic). The formula is max (10, F/2000) flows, where F is the number of all flows processed.

For an event to be considered for inclusion, any of the thresholds can be exceeded – either the
behavior has transferred a non-negligible amount of information in a single connection (e.g. data
leaks, tunnels, brute forcing, etc.), or it represents a non-negligible amount of distinct connection
attempts (e.g. scans, service failures, and again brute forcing, etc.).

The thresholding takes precedence over the “at most X% of malicious traffic not classified rule”,
and in some cases, can result in violation thereof. In these cases, the system was unable to find a
behavioral connection between the flows. It will leave the flows unclassified and will output them
as a single block, which can then be analyzed manually using the flows analyzer.

The algorithm

The events selection algorithm runs in several phases.

The first phase occurs at the very beginning of the events creation process. If the events creation
process determines, through statistics on the processed traffic, that a certain flow cannot be clus-
tered with another flows to form a basis of a behavior, and it does not meet the minimum size
requirement, then the flow is exempted from events creation altogether. This is an optimization
of the process where such a flow would be considered as an event, classified, and then that event
dropped on the basis of not meeting the minimum size requirement.

The second phase occurs after the events creation process has finished, providing a set of classified
events. Primarily, the algorithm will include all events that are considered important and meet
the minimum size requirements.

If at this stage the ”at most X% of malicious traffic not classified rule” is not already satisfied,
a greedy algorithm is applied to include as few unimportant events as possible to meet the rule.
These also must satisfy the minimum size requirements.

The rationale for this algorithm comes from the fact that the information value of an event is
currently binary, i.e. it provides a piece of important information or not:

1. We first include all important events to maximize the total information value.
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2. We then include unimportant events on a largest-first basis, to degrade the total information
value as little as possible.

This algorithm is sufficiently fast, as it requires at most O (N) operations, where N is the number
of events.

2.2.7 Action recognition

As we have mentioned in the introduction of this section, the events generated using the events
extraction and labeling process are used in game-theoretical model as a sequence of attacker’s ac-
tions. However, the labeled events cannot be used as actions directly because of the incompatibility
between event’s types and action’s labeling. This incompatibility reflects the different needs of the
human operators of the system and the automated game-playing methods. Therefore, we have to
introduce mapping between labels assigned by the labeling algorithm and action’s names defined
in the attacker’s model discussed in Section 2.3.

The mapping between event’s labels and action’s names can be characterized as M : N relation.
There is an event which maps to more than one action and on the other hand more events map
to single action. For example, event labels http request, https request, https request, and
https response map to single action — WEB ATTACKS and events classified as data transfer

(tcp) can represent one of actions CONNECT TO HOST, CONNECT TO C2 and UPLOAD DATA TO C2.
Next, we have to select only the subset of labels which refer to actions defined in the attacker’s
model used in context of the current work. This means that a subset of event labels (as produced
by the classification/labeling process) does not map to actions in the game theoretic model. For
example, events classified as new unexpected service, new unknown client, etc. labeled by
stateful ITA agents do not have any matching actions. Thus, at this stage, we have decided to
use only the events labeled by stateless agents. These agents produce classified events such as
DNS request/response, vertical TCP port scan, etc. which directly map to the actions in the
model. The result of stateful event classification is used as a negative filter, i.e. it reduces the
number of events to consider, and therefore reduces the computational complexity of the problem.
The complete visualization of the mapping is shown in Table 2.1.

2.2.8 Experiments

We have made several experiments to measure the accuracy of the events creation and classification
process. Normally the input for the events creation and classification process does not contain any
simulated flows, but solely for the purpose of this experiment we have modified the system to
include them. This way we were able to evaluate hypothesis evolution on a challenges simulated
by the plan executor agent. This means that we measured how these two layers perform against
each other.

Figure 2.4 shows that hypothesis value of a SITA representing http server grows rapidly from the
uncertain value of 0.5 to the value near 1, representing near certainty. The evaluation is performed
on the simulated flows that were generated by Plan executor from the repetitive Plan 7 containing
only one web server-like behavior action.

Figure 2.5, shows evolution of hypothesis of SSH server SITA during several large concurrent SSH
brute-force attacks against one IP address. There were few attackers that were simulated by plan
executors. Each of them was executing a static plan starting with a large scan of the network
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data transfer (tcp) {CONNECT TO HOST, CONNECT TO C2, UPLOAD DATA TO C2}
data transfer (udp) {CONNECT TO HOST, CONNECT TO C2, UPLOAD DATA TO C2}
dns request {DNS REQUESTS}
dns response {DNS REQUESTS}
dns tunnel client request {DNS REQUESTS}
dns tunnel client response {DNS REQUESTS}
ftp-data request {UPLOAD DATA TO C2}
ftp-data response {UPLOAD DATA TO C2}
heavy dns use {DDOS TO SPECIFIC SERVICE, DDOS TO HOST}
http request {WEB ATTACKS}
http response {WEB ATTACKS}
https request {WEB ATTACKS}
https response {WEB ATTACKS}
icmp traffic {HORIZONTAL PING SCAN}
periodical polling requests {CONNECT TO C2, UPLOAD DATA TO C2}
port scan (horizontal, tcp) {HORIZONTAL SCAN FOR SPECIFIC SERVICE, HORIZONTAL PING SCAN}
port scan (horizontal, udp) {HORIZONTAL SCAN FOR SPECIFIC SERVICE, HORIZONTAL PING SCAN}
scan-like behavior (horizontal, tcp) {HORIZONTAL SCAN FOR SPECIFIC SERVICE, HORIZONTAL PING SCAN}
scan-like behavior (horizontal, udp) {HORIZONTAL SCAN FOR SPECIFIC SERVICE, HORIZONTAL PING SCAN}
scan-responses-like behavior (horizontal, tcp) {HORIZONTAL SCAN FOR SPECIFIC SERVICE, HORIZONTAL PING SCAN}
scan-responses-like behavior (horizontal, udp) {HORIZONTAL SCAN FOR SPECIFIC SERVICE, HORIZONTAL PING SCAN}
port scan (vertical, tcp) {FINGERPRINTING, PORT SCAN}
port scan (vertical, udp) {FINGERPRINTING, PORT SCAN}
scan-like behavior (vertical, tcp) {FINGERPRINTING, PORT SCAN}
scan-like behavior (vertical, udp) {FINGERPRINTING, PORT SCAN}
scan-responses-like behavior (vertical, tcp) {FINGERPRINTING, PORT SCAN}
scan-responses-like behavior (vertical, udp) {FINGERPRINTING, PORT SCAN}
proxy request {WEB ATTACKS}
proxy response {WEB ATTACKS}
p2p-like behavior (tcp) {CONNECT TO C2, UPLOAD DATA TO C2}
p2p-like behavior (udp) {CONNECT TO C2, UPLOAD DATA TO C2}
scan-like behavior {HORIZONTAL PING SCAN, HORIZONTAL SCAN FOR SPECIFIC SERVICE}
scan-responses-like behavior {HORIZONTAL PING SCAN, HORIZONTAL SCAN FOR SPECIFIC SERVICE}
smtp request {SEND SPAM}
smtp response {SEND SPAM}
smtps request {SEND SPAM}
smtps response {SEND SPAM}
ssh cracking {BRUTEFORCE}
ssh request {CONNECT TO HOST}
ssh response {CONNECT TO HOS}

Table 2.1: Events – actions M : N mapping.

Plan 7 Static web server plan example.

(!webServer endless=true)
(?ServerIP=(IP)0.32.80.120)
(?ClientsSubnet=(IP)0.32.84.0/26)

(webServer ServerIP ClientsSubnet LARGE)
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Figure 2.4: Hypothesis growth of the http server stateful ITA on a flows that were generated by
the Plan executor that simulates web server.

and then trying SSH brute-force attack on predefined IPs. The graph shows the hypothesis value
of the SSH sever ITA that corresponding to the attacked IP. It can be seen that the hypothesis
decreases from its initial value of 0.5, albeit not monotonically. This is caused by the competition
of the stateful ITA representing SSH server and stateless ITA corresponds to SSH cracking, which
eventually wins.

2.3 Attacker’s Model in the System

In order to recognize attacker’s plans using the game-theoretical approach we have to be able to
model his behavior. In Section 2.2 we have presented an action extraction process which allows
us to detect single action of an attacker. However, to recognize attacker’s plans we have to know
much more than individual actions. Thus, we have to be able to predict possible actions in next
step.

To solve this problem we present technique for plan representation based on a PDDL domain. We
assume that attacker is able to perform only these actions that are defined in the PDDL domain.
Moreover, the sequence of attacker’s actions has to fulfill the constrains defined by this domain.
Therefore, using this domain we are able to model attacker’s behavior. Note that the domain
described in this section can be used not only for plan recognition but for advance attacker’s
simulation as well (See Section 2.1).

In this section we will at first discuss attack graphs as the basis for the PDDL domain definition.
Next, we will present the domain created using these graphs.
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Figure 2.5: Evolution of hypothesis of a stateful ITA when inserting flows that represent SSH
access attack plan.

2.3.1 Attacker graphs

Based on behavior of the real network attackers observed during last decade we are able to identify
similarities and common steps which most of the attackers have to perform to be able to fulfill
their goals. From these observations, we are able to create a graph representing different stages of
most of the common attacks. In this section we will introduce the proposed attack graph structure
and describe specific stages of the attack graph in more detail.

From our point of view, we define 5 different stages: information gathering (reconnaissance),
attack, maintaining access, spread and call home. Relations between these stages can be seen on
Figure 2.6. As this figure shows, the attacker can return to reconnaissance stage after any part
of the attack in case that he found some interesting information about targeted network which
enables him to modify goals of his attack or start a whole new attack. This fact is represented by
arrow returning from all stages back to the reconnaissance stage.

Note that in all diagrams the parallelogram-shaped nodes denote the whole stages of an attack.
Next, the oval-shaped nodes denote internal action which is not visible to the defender through
the prism of the NetFlow data — e.g. choosing a target or executing commands on targeted host,
etc. The rectangular nodes appearing in all of the diagrams correspond to the part of an attack
which is observable as a network action and can be therefore traced to one or more flows in the
NetFlow data. Last, the octagon-shaped leafs represent the subgoals of a stage.

At first, the attacker has to perform the information gathering displayed on Figure 2.7. During this
stage he is trying to discover information, such as information about the company, their defenses,
IP addresses of important servers, etc., the attacker is choosing target. To obtain all this necessary
information to penetrate the defense of the targeted network he can use various techniques, such
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as horizontal ping scanning, horizontal scans for specific service, web crawling, etc. He can also
use some techniques of social engineering such as phishing to obtain access to important accounts
on servers.

Figure 2.6: Global graph representing the attack as a whole.

Next, when he possesses all necessary information he is ready to choose his target and then perform
the attack. In the attack stage the main attacks such as bruteforce or DDoS are performed to gain
access to targeted machines or disable specific service. In this stage, the attacker is most visible to
the IDS system. As it needs to perform an attack from outside of the network, he has to generate
some amount of NetFlows that will be processed by the CAMNEP system. This stage is shown on
Figure 2.8.

If the exploit of the targeted system was successfull, the attacker proceeds further. He tries to
maintain persistent access to the system by means of backdoors, sysproxy, periodic reverse calls or
use of covert channels, often concealed from the OS by the use of rootkitthus gain the ability to
establish a new connection to the system at will.

When the malware is installed into targeted network, the attacker is able to spread the malware
further into the other hosts within the targeted network to affect more computers and search for
more interesting data.

In the last stage, the malware is already spread over the target network and awaits a trigger or
a signal from C&C1 structure. When it receives this notification through one or more possible
channels, it starts its activity and sends collected data to C&C server and therefore achieves its
objective. We assume that the data sensitive data is harvested by means of key loggers, targeted

1Command and control

36

Distribution A:  Approved for public release; distribution is unlimited.



January 16, 2012 Final Report

F
ig

u
re

2.
7:

D
et

ai
le

d
d

es
cr

ip
ti

on
of

th
e

re
co

gn
it

io
n

st
ag

e
of

an
at

ta
ck

.

37

Distribution A:  Approved for public release; distribution is unlimited.



January 16, 2012 Final Report

.

F
ig

u
re

2.
8:

M
ai

n
p

ar
t

of
th

e
w

h
ol

e
at

ta
ck

.
P

os
si

b
le

te
ch

n
iq

u
es

to
p

er
fo

rm
at

ta
ck

an
d

ga
in

ac
ce

ss
to

th
e

ta
rg

et
ed

n
et

w
or

k
an

d
p

os
si

b
le

g
o
a
ls

.

38

Distribution A:  Approved for public release; distribution is unlimited.



January 16, 2012 Final Report

Figure 2.9: Maintaining access to affected hosts in the network.

copies of used/modified files, local keyword-based search for specific documents or by copying the
documents from default/recently accessed locations.

Figure 2.10: Call-home stage. After the malware is successfully spread into network it is waiting
for trigger or searching for interesting data which will be sent to the attacker.

2.3.2 Definition of the PDDL Domain

In previous section we have introduced attack graph as a formalism used to describe usual behavior
of the attackers. Using these graphs, we have defined plans suitable for common attacks performed
against protected networks. We can use this knowledge to define a domain which allows us to model
much wider attacker’s behavior and therefore automatically generate far richer family of plans.
However, these plans blindly generated by traversing this domain do not have to be necessarily
reasonable (i.e. optimal) and therefore we have to add some level of knowledge into the algorithm
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to generate more realistic plans of attacks. To solve this problem we have used game-theoretical
approach which is described in Section 3.3.

As we have stated above, we have used the attack graphs as the basis for definition the planning
domain. We have defined the attacker’s actions which are represented by nodes in diagrams 2.6, 2.7,
2.8, 2.9 and 2.10. We have decided to limit the number of actions because of the computational
complexity. As we are not able to see any actions that don’t result in network activity (and
corresponding NetFlow data), all the actions denoted by oval-shaped nodes are not modeled.
These two limitations restrict the model to actions which are visible as network connections.

In order to define this domain, we have used the PDDL language briefly described in Section 2.1.2.
Each action can have preconditions which have to be fulfilled before this action can be applied and
has effects which affect the model after the action is applied. Preconditions and effects are defined
as a set of predicates. Before any action is performed, the predicates defined in its preconditions
need to be active. Once the action is performed, the set of predicates defined in effect becomes
active. Using this approach, we can easily model changes of the state of the world defined by this
domain.

In examples 8, 9, 10, 11 and 12, we illustrate a plan with the goal of infecting a hardware device
(such as robotic arm, electricity generator or similar device) controlled by a specific host in the
network. The success would enable the attacker to gain control of the device or even render this
device inoperable. The first action HORIZONTAL SCAN FOR SPECIFIC SERVICE has no pre-
conditions and therefore attacker modeled by this domain can perform this action. After perform-
ing this action predicates LIST OF ACTIVE HOSTS KNOWLEDGE and SERVICE ON ACTI-
VE HOST KNOWLEDGE become active. The predicate SERVICE ON ACTIVE HOST KNOW-
LEDGE is listed as precondition in next action — the BRUTEFORCE. When the BRUTEFORCE
action is executed predicates ACCESS TO SERVER KNOWLEDGE and CAN STOP become ac-
tive. Note that predicate CAN STOP indicates that this state of the world could be taken as final
and no other action has to be performed. However in our example we have three more actions
which attacker carries out to fulfill his goals. Note that, the defined PDDL domain is able to model
much richer plans than the presented one.

Action 8 Example of horizontal scan for specific service – e.g. SSH service

(:action HORIZONTAL SCAN FOR SPECIFIC SERVICE
:parameters()
:precondition ()
:effect (and
(LIST OF ACTIVE HOSTS KNOWLEDGE)
(SERVICE ON ACTIVE HOST KNOWLEDGE))
)

Action 9 Example of bruteforce attack for specific service

(:action BRUTEFORCE
:parameters ()
:precondition (SERVICE ON ACTIVE HOST KNOWLEDGE)
:effect (and (ACCESS TO SERVER KNOWLEDGE) (CAN STOP))
)

In order to build the global game-theoretical model, the price/value of each plan needs to be
evaluated in order to assess the importance of the plan. The value V is defined as sum of cost of
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Action 10 Example of establishing access to targeted host in the network

(:action CONNECT TO HOST
:parameters ()
:precondition (ACCESS TO SERVER KNOWLEDGE)
:effect (and (PERMANENT CONNECTION KNOWLEDGE) (CAN STOP))
)

Action 11 In this action malware installed into targeted host in the network establishes connection
to the C&C server to obtain new commands or updates.

(:action CONNECT TO C2
:parameters ()
:precondition (ACCESS TO SERVER KNOWLEDGE)
:effect (and (UPDATES RECEIVED) (COMMANDS RECEIVED))
)

all active predicates PA.

V =
∑

p∈PA
Cp (2.1)

where Cp ∈ R+ is a cost of the predicate p that is set according the current network security
policy. Thus, the value V of each of the plans describes the overall security risk.

To generate plans from defined PDDL domain we have to traverse through the domain. The
traverse algorithm starts with a default world state, where there are no active predicates and
explore the domain in the depth-first search manner. In the first step, only actions that have
no preconditions are applicable. Next, it takes all actions applicable to the current state of the
world, i.e. it selects an action with active predicates. Next, it prunes actions which gives no more
information and therefore are useless for attacker. This way we are able to generate large set
of various plans. That are used in game-theoretical model for attacker’s behavior estimation as
described in more detail in Section 3.3

2.4 Confusion Matrix Computation

In order to model the detection capability of the system on the level that can be represented and
used in the game-theoretical reasoning, we will build the confusion matrix which quantifies the
joint error function of the anomaly detection and event classification components of the CAMNEP
system.

Action 12 Example of propagating virus downloaded from C&C server and propagating this virus
into device controlled or managed by targeted host.

(:action UPLOAD VIRUS TO CONTROLLED DEVICE
:parameters ()
:precondition (COMMANDS RECEIVED)
:effect (and
(VIRUS UPLOADED TO CONTROLLED DEVICE)
(GAIN CONTROL TO DEVICE))
)
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In this section we will detail the technique for the estimation of detection probabilities that are
used in game theoretical model (See Section 3.3 for more details) to select the optimal defender’s
action. The probability P defined in Formula 2.2 represents the probability that system observes
action ok (so called observation) when attacker performed action aj and defender used action di.
Note, that observations ok and attacker’s actions aj are from the same set of actions defined by
PDDL domain described in Section 2.3.2.

P (ok|di, aj) . (2.2)

2.4.1 Estimation of the Confusion Matrices

Flows

Trustfullness

Fl
ow
s

2010-10-22 11:38:13.684 0.000 UDP 147.32.84.131:53 ->147.32.80.9:50593 ...... 0 1 118 1
2010-10-22 11:38:13.845 0.000 UDP 147.32.84.131:53 ->147.32.80.9:54452 ...... 0 1 118 1
2010-10-22 11:38:14.398 0.000 UDP 147.32.84.131:53 ->147.32.80.9:51980 ...... 0 1 118 1
2010-10-22 11:38:14.559 0.000 UDP 147.32.84.131:53 ->147.32.80.9:56525 ...... 0 1 118 1
2010-10-22 11:38:14.718 0.000 UDP 147.32.84.131:53 ->147.32.80.9:49533 ...... 0 1 118 1
2010-10-22 11:38:14.879 0.000 UDP 147.32.84.131:53 ->147.32.80.9:55246 ...... 0 1 118 1
2010-10-22 11:38:15.040 0.000 UDP 147.32.84.131:53 ->147.32.80.9:59087 ...... 0 1 118 12010-10-22 11:38:15.040 0.000 UDP 147.32.84.131:53 ->147.32.80.9:59087 ...... 0 1 118 1
2010-10-22 11:38:15.199 0.000 UDP 147.32.84.131:53 ->147.32.80.9:57793 ...... 0 1 118 1
2010-10-22 11:38:15.359 0.000 UDP 147.32.84.131:53 ->147.32.80.9:63011 ...... 0 1 118 1
2010-10-22 11:38:15.521 0.000 UDP 147.32.84.131:53 ->147.32.80.9:59321 ...... 0 1 118 1
2010-10-22 11:38:15.682 0.000 UDP 147.32.84.131:53 ->147.32.80.9:55698 ...... 0 1 118 1
2010-10-22 11:38:15.842 0.000 UDP 147.32.84.131:53 ->147.32.80.9:60765 ...... 0 1 118 1

Detection Classification Classified events

SSHscan
Portscan
Bruteforce
Webtraffic

Figure 2.11: Scheme of the detection process.

The detection process is performed in two stages (See Figure 2.11) that affect the detection and
correct classification of attacker’s action aj . The first stage, on Figure 2.11 denoted as Detection,
performs anomaly detection (described in Section 1.2.4). There is a set of anomaly detection
methods evaluating each attacker’s action. Next, results from all methods are aggregated into
single final value. Different methods of aggregation represent defender’s actions in our definition
of the game. Note, that in this part of detection process actions are represented as sets of flows
without label. The detection stage evaluates for each of those flows trustfullness value. The
trusted flows are considered legitimate and untrusted flows as malicious. Additionally, the first
layer compute the position of the threshold between legitimate and malicious traffic and only the
malicious traffic is passed to action extraction and labeling phase (See Section 2.2).

We can estimate probability of detection as follows

P (aj |di) =
|amal
j |
|aj |

. (2.3)

where |amal
j | is number of flows generated by action aj which were labeled as malicious when

aggregation function (i.e. defender action) di was used and |aj | is number of all flows from action
aj . The probability P (aj |di) represents the probability that action aj is denoted as malicious and
passed to the second phase when aggregation function (i.e. defender action) di was used. Note
that, the estimation of the probability P (aj |di) is computed using preclassified sets of flows called
challenges (see Section 1.2.4).

The second process, the actions extraction and labeling stage — on Figure 2.11 denoted as Clas-
sification — receives only the flows labeled by detection stage as malicious and produces classified
actions which are used as observations of attacker’s actions. The performance of the classification
process affects the output of the whole system and therefore has to be included in observation
probability P (ok|aj , di) estimate.
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The probability of correct classification is estimated as P (ok|aj). To obtain this estimate, we have
passed all captured flows to classification phase and processed them. Then, we have computed the
classification error, which represents the classification probability. This experiment was performed
on a 14-day NetFlow capture from the Czech Technical University network that was manually
classified in advance. The classification was made by a network analysis expert and flows were
labeled with matching actions from the PDDL domain.

Using result from this experiment we were able to create a confusion matrix shown in Table 2.2.

0.6817 0.0023 0.2912 0.0 0.0 0.0 0.0 0.0113 0.0113 0.0 0.0 0.0023 0.0
0.0 0.3923 0.2152 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3923 0.0002
0.0 0.25 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.0
0.0 0.0426 0.0426 0.0091 0.0091 0.8507 0.0 0.0033 0.0 0.0 0.0 0.0426 0.0
0.0 0.0426 0.0426 0.0091 0.0091 0.8507 0.0 0.0033 0.0 0.0 0.0 0.0426 0.0
0.0 0.0426 0.0426 0.0091 0.0091 0.8507 0.0 0.0033 0.0 0.0 0.0 0.0426 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0
0.0273 0.0023 0.0343 0.0 0.0 0.0 0.0433 0.4788 0.3662 0.0433 0.0 0.0023 0.0023
0.0307 0.0026 0.0387 0.0 0.0 0.0 0.0488 0.4127 0.4127 0.0488 0.0 0.0026 0.0026
0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0 0.0
0.0 0.333 0.1826 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4842 0.0002
0.0 0.0048 0.0027 0.0 0.0 0.0 0.0011 0.0016 0.0016 0.0011 0.0 0.0048 0.9822

Table 2.2: Confusion matrix estimated during the experiments performed on real data manually
classified in advance. The actions in represented by rows and columns are following: BRUTEFORCE,
CONNECT TO C2, CONNECT TO HOST, DDOS TO HOST, DDOS TO SPECIFIC SERVICE, DNS REQUESTS,
FINGERPRINTING, HORIZONTAL PING SCAN, HORIZONTAL SCAN FOR SPECIFIC SERVICE, PORT SCAN,
SEND SPAM, UPLOAD DATA TO C2, WEB ATTACKS. Note that order of rows and columns matches the
alphabetical order of actions

The confusion matrix visualizes the performance of a classifier. Each column of the matrix rep-
resents the instances of the predicted class (classification result), while each row represents the
instances of the actual class. The elements of the confusion matrix are probabilities of the classi-
fication P (predicted class|actual class) and the sum of rows in a column equals to 1. In our case
predicted class represents observation ok and actual class is the performed action aj . For example,
from the matrix C defined in Equation 2.4 we can easily see, that for this specific classifier (in this
example we have used the classification of colors) the probability that red color will be classified
as red is 0.9 and as blue is 0.1 and similarly for the blue color.

C =

(Red Blue

Red 0.9 0.2
Blue 0.1 0.8

)
(2.4)

Finally, once we have estimated probabilities P (ok|aj) and P (aj |di), we can compute the observa-
tion probability stated in Equation 2.2 using the Eq. 2.5. Note that the set of actions is extended
with special action called NOOP representing the action when attacker performs no action or some
action is classified as normal traffic. This represents a false negative.

∀i ∈ {1 . . .m}P (ok|di, aj) =





P (aj |di)P (ok|aj) when k, j ∈ {1 . . . n}
1− P (aj |di) when k = 0, j ∈ {1 . . . n}
0 when k ∈ {1 . . . n}, j = 0
1 when k, j = 0

(2.5)

The first case in the definition represents the situation when attacker performs action aj , the
detection layer using aggregation function di detects this action as malicious and the classification
phase labels this action as an observation ok. The second case represents the situation when the
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detection phase labels the action aj as legitimate traffic. This case represents false negative error of
the system. The third and fourth case represents the situation when attacker performs no action.
In previous paragraphs, we have described the detection and classification process and we have
stated the assumption that only the attacks are taken in account during the estimation of the
observation probability P (ok|aj , di). Therefore, when attacker performs no action, there are no
observable flows. Consequently, their label (on the basis of this strict assumption) has to be always
NOOP. The Formula 2.5 is rewritten into following matrix.

Cdi =




1 1− P (a1|di) 1− P (a2|di) . . . 1− P (an|di)
0

...
0 P (ok|a1)P (a1|di) P (ok|a2)P (a2|di) . . . P (ok|an)P (an|di)
...

...
0




(2.6)

The submatrix containing the probabilities P (ok|aj)P (aj |di) represents the confusion matrix spec-
ifying the performance of the classification. The matrix 2.6 represents the joint properties of
confusion matrix for both the detection and classification process. The verification of the results
in the first column is trivial. For the sum of the rest of the columns following equations holds.

1− P (aj |di) +
n∑

k=1

P (ok|aj)P (aj |di) = (2.7)

1− P (aj |di) + P (aj |di)
n∑

k=1

P (ok|aj)
︸ ︷︷ ︸

=1

= 1 (2.8)
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Chapter 3

Game-Theoretic Model of the
Attacker/Defender Interaction

3.1 Formal Game-Theoretic Model of the Attacker/Defender Interaction

We aim to use the game-theoretic models to improve the security of the adaptation process within a
distributed, agent-based Intrusion Detection System (IDS). Adaptation, self-management and self-
optimization techniques that are used inside an Intrusion Detection Systems (IDS) significantly
improve their performance [46] (i.e. reduce the number of false alarms) in a highly dynamic
environment, but are also a potential target for an informed and sophisticated attacker. When the
adaptation techniques are deployed improperly, they can allow the attacker to reduce the system
performance against one or more critical attacks. This chapter we discuss game theoretical models
of adaptation processes inside an autonomic, self-optimizing Intrusion Detection System.

Our goal is first and foremost to analyze the risks related to opponent’s manipulation of system
internal state and configuration, performed in order to reduce its effectiveness. This addresses the
existing concern with expected increase in malware (malicious software) sophistication - theoretical
models for distributed learning in malware exist [29], and strategic manipulation of Intrusion
Detection Systems by shaping of the input data has been demonstrated, albeit offline [47]. This
behavior corresponds to wider context of targeted attacks on learning processes, studied in the
fields of adversarial machine learning and adversarial classification [6]. To address this issue we
have made several experiments with attacks to learning process of each of the detection methods.
Results of these experiments can be found in Section A.

Therefore, if we want to introduce an environment-driven adaptation into an industrialized intru-
sion detection system, we need to determine what is the extent to which can the opponent misuse
the adaptation functionality to reduce system’s effectiveness, and we need to model the attacker
as an informed, strategically behaved entity performing a targeted attack rather than a random
threat. Specifically, we present:

– Architectures integrating the abstract game models into an IDS with self-monitoring capa-
bility, in order to simulate the worst case, optimally informed attacker. Such (hypothetical)
attacker with full access to system parameters could dynamically identify the best strategy
to play against the system. Optimizing the detection performance against the worst case
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attacker protects the system from more realistic attacks based on long-term probing and
adversarial machine learning approaches referenced above.

– Experiment answering the following crucial question: What is the cost of preventive IDS
resistance to such attackers with access to internal state information and outputs of an IDS?
In other words, we measure whether and by how much will the preventive randomized IDS
reconfiguration against the ”worst case”, highly sophisticated attacks with insider access
reduce its performance against the ”standard”, relatively unsophisticated attackers with no
knowledge of IDS existence, nominal effectiveness and current internal state.

In the following, we conceptualize the relationship between the attacker and the defender from the
general point of view.

3.1.1 IDS Game Definitions and Assumptions

The game model (and utility functions in particular) are based on [12], with additional inputs from
the network administrators and actual IDS users and inspiration from earlier work [1, 2, 34]. The
game model integrates the preferences and strategies of two players (attacker and defender). Their
strategy sets are defined as a selection of IDS configurations for the defender and the selection
of a particular attack type (e.g. buffer overflow, password, brute-force, scan...) for the attacker.
The main difference of the utility functions from [12] is the relaxation of the requirement on the
identical attacker gain/defender loss and the proportionality of associated costs (alarm processing,
monitoring etc.) with the gain/loss value. We were able to relax this requirement in our model
and implementation, as it was subject to critique from our clients: practitioners in the network
administration field. In the following section we have kept the values identical in our experiments
to comply with Chen [12].

The actual utility function values of both players depend principally on the sensitivity of the system
using defender’s strategies with respect to individual attacker’s strategies, and the associated rate
of false positives for each configuration. By our experience, these values wary widely with changing
characteristics of the background traffic, and need to be estimated dynamically for each given game
in a sequence, as we will present below.

The key dynamic parameters of the model are:

– αi,j denotes the probability that the j-th attack strategy is detected by the IDS when the
defender plays the i-th defense strategy.

– βi denotes the probability that the i-th defender’s strategy will result in a false positive (false
alert) on a particular connection/flow/packet.

3.2 One Stage Game

In this section, we will use the simplest model available in the field of the game theory, a single stage
game of two players. Thus we model the interaction between defender and attacker as sequence
of single stage, two player, non-zero sum games, where the attack/defense actions of both players
correspond to strategies in the game-theoretical model of their interaction.
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3.2.1 Game Model

Many of the game-theoretical models used in the security domain use the Stackelberg form [61],
where one of the players assumes leader’s role (defender) and the other follows. In our case, this
format is not appropriate: both players act without any knowledge of the actions performed by the
other player. The attacker acts first, and the defender is unable to perceive the attacker’s actions
before committing to a particular strategy.

Each such game is defined as a three tuple:

G = (N,S, U) (3.1)

– where N is a set of players denoted N = {d, a}, where player a is the attacker (column
player) and player d is the defender (row player),

– S is a set of strategies available to players. In our case, where the strategies are disjunctive,
we impose simply S = {d1, ..., di, ..., dm, a1, ..., aj , ..., an}, here the strategies di are those of
the defender and the strategies ai are available to the attacker, and

– U denotes utility function of the form: U : S × S → R×R, or less formally: U : di × ai →
(ud, ua). Utility function returns the game payoff of the defender ud and the attacker ua
when these invoke the strategies di and ai respectively.

The gameplay of this game type is very simple in our case: both players simultaneously select their
strategies from the set S and the combination of these strategies determines the payoffs to attacker
and defender, as defined by their respective utility functions. Note that due to the inherent nature
of the IDS problem, the game is not a zero sum game. The solution concepts used to solve/analyze
the game are Max-Min and Nash equilibria1.

In a real system, we don’t play a single game, but rather a sequence of the games described
above, each corresponding to a particular time interval. The individual games in the sequence
are differentiated by the dynamically evolving parameters of player’s utility functions as defined
below. As we are only considering the adaptation use-case, we consider the individual games in
the sequence to be independent and we don’t carry over any information between them. The game
integration with IDS architecture is described in Section 3.2.2, where we also discuss other model
considerations from the system perspective.

Strategies

The defender’s pure strategies are defined as a selection of one system configuration from a finite
number of available configurations, with mixed strategies defined on this support.

The attacker’s pure strategies are defined even more easily. Each attacker’s strategy is defined by
performing one attack such as horizontal scan, vertical scan, host fingerprinting, buffer overflow,
denial of service and others. Mixed strategies are defined similarly to those of the defender, as a
probability distribution on the support of attack actions. In practice, the attackers also execute
their strategies in a particular, logical orderings (plans), but the identification and use of this
behavior is outside of the scope of this paper.

1The main practical difference is the need for opponent modeling - should the players use the concept of Nash
equilibria, they need either to know each other’s utility function or they need to estimate the shape of the utility
function from other agent’s behavior [29]. This knowledge is not necessary in the max-min approach, where the
players rely only on the knowledge of their own utility functions.
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Utility Functions

The form of the utility functions determines the characteristics of the game – if the game is a
zero sum game, i.e. the sum of utilities of all players is constant over any combination of played
strategies, it is relatively easy to identify stable Nash equilibria. However, in our case, the game
is not zero sum. This is a natural corollary of the criminal character of the activities [7] – crime
can be commonly defined as an activity that redistributes the utility between the players at the
expense of the overall utility reduction.

The utility functions in our game are relatively complex, as they need to reflect the complexity of
the problem. The parameters of both utility functions are:

– αi,j denotes the probability that the attack strategy aj is detected when the defender selects
the defense strategy di. Intuitively, in our case, it estimates the probability of the given
detection strategy (i.e. aggregation function) being able to successfully raise an alarm upon
the occurrence of an attack from the class corresponding to aj . It depends on current status
of detection agents and the background traffic.

– βi denotes the probability that a given detection strategy, combined with current system
state and background traffic, will result in a false positive. Note that this element only
influences defender’s payoffs, and its manipulation can be used by the attacker to launch
denial-of-service attacks on detection mechanisms [39].

– γj denotes the probability of attack success. It discounts the value of undetected breach from
both the attackers and defenders standpoint, and typically features low values.

– V denotes the background traffic volume in the game time (average, aggregate or other
appropriate value according to the underlying IDS system nature) that is used to estimate
the number of false positives together with the parameter βi.

– Pd(aj) denotes the defender’s payoff/loss on attack success. It is most often a negative value,
except for multi-tier honeypot systems or very particular situations where the defender can
gain knowledge from the attacker bypassing the IDS. The loss can be relatively low in case of
exploratory activities (scan, fingerprinting), but is relatively high when the attacker actually
breaches a system.2

– Pa(aj) denotes the utility the attacker expects to receives upon successful realization of given
attack action from the attack class corresponding to strategy aj .

– Da(aj) denotes the attacker’s payoff/loss on detection, which is typically a negative value.
The value of this parameter can vary widely, as it can be very high (in absolute value) for
last stages of elaborate attacks executed inside defender’s perimeter, or can be almost zero
in case of Internet attacks.

– Dd(aj) denotes the defender’s payoff for attack detection. This parameter value is the main
cause for the game not being a zero sum game in a general case, as the payoff is typically
zero in enterprise or Internet settings following the similar reasoning as in the Pd(aj) case
– damages from the attacking party are almost impossible to seek (not even considering the
problems related to the root attacker identification and burden of proof).

– Ca(aj) denotes the cost of the attack execution on the part of attacker. Typically very low
for Internet-originating attacks.

2The attack tree-based methodology introduced in [45] allows the distribution of this ultimate utility between the
pre-condition actions, effectively motivating the system to concentrate on all relevant stages of the attack (equivalent
to attack classes aj) during the game.
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– CTP - denotes the (average) cost of processing of each detected incident (true positive) for
the defender.

– CFP - denotes the average cost of a false alarm for the defender, used in conjunction with β
and V to estimate the false positive cost.

– CM - denotes the fixed cost of monitoring infrastructure, independent on attack or traffic
intensity.

The utility function of the defender has three principal components: the first term deals with suc-
cessfully detected attacks, the second term represents the loss associated with undetected attacks
and the third term describes the overhead of the monitoring, which consists of the false positive
costs and the fixed cost of monitoring.

Individual utility functions are defined as follows. Defender’s utility is:

ud(dj , ai) = αi,j(Dd(aj)− CTP) +(1− αi,j)γjPd(aj)
−βiV CFP − CM (3.2)

Attacker’s utility can be described as:

ua(dj , ai) = αi,jDa(aj) + (1− αi,j)γjPa(aj)− Ca(aj) (3.3)

Utility function terms. The first situation that we represent corresponds to attack detection.
The term in the defender’s utility function describing this situation (without the fixed costs of
monitoring and false positives, which will be discussed below) is: αi,j(Dd(aj) − CTP). We can
see that the defender may get some payoff from attack detection, but globally, the value of the
term Dd(aj) would be zero or negative due to the reinstallation and recovery costs. The term CTP

represents the immediate cost of incident detection, investigation and processing.

On the attacker’s side, this situation is described by the term: αi,jDa(aj). We can see that the loss
of the attacker depends almost entirely on the impact the detection has on attacker’s plans – the
value can be relatively high in the last stages of complex attack plans deep within the protected
perimeter, but is next to zero for malware propagation on Internet due to the lack of effective
enforcement.

The second term of the utility function covers the situation when the attacks are not detected. In
the defender’s case, the term is:(1 − αi,j)γjPd(aj). The first factor corresponds to non-detection
probability, while the factor γj describes the likelihood of attack/exploit success, which then amor-
tizes the value of the successful execution Pd(aj). The impact of the factor γj is crucial. When
there is an attack, the actual defender’s optimum in most situations is that the attack is both
undetected and unsuccessful. Reasoning behind this analysis is straightforward: The term Dd(aj)
is typically zero or negative3, the term −CTP is also negative and the best strategy is therefore to
avoid detection of attacks with low loss/likelihood product γjPd(aj).

3The only situations where this term is actually globally positive are those where an efficient counter-attack
mechanism (in tactical/military problems) or intelligence-processing mechanism allows the defender to counter-
attack the attacker’s resources or to deduce attacker’s goals, plans or at least intentions. From the other side of the
problem, the attacker needs to structure its actions in such a way, that their eventual compromise would not give
away disproportional high volume of information about its goals or resources. This consideration is integrated in
the value of the term Da(aj).
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From the attacker’s perspective, the second term is a straightforward amortization of success payoff
by success likelihood and non-detection probability. Failure to exploit (with probability 1 − γj)
is also preferable to detection for the attacker, but only by the slight margin of the term Da(aj),
which is typically low for external attacks: (1 − αi,j)γjPa(aj). The conclusion that some (i.e.
unsuccessful) attacks are better left undetected may seem surprising, but it actually corresponds
to very natural equilibria, due to the costs associated with any detected attacks. The problem
in this case is therefore how to optimize the sensitivity of the intrusion detection system, so that
it will only detect the relevant threats. We attempt not only to remove the false positives, but
also discount the value of true positives with little relevance to the actual system. This behavior
ensures more effective monitoring with little or no impact on security.

The last component of both utility functions captures the costs related to cyber-attack or de-
fense. Attacker’s side lost utility can be trivially described as the cost associated with attack
performance:−Ca(aj). The defender’s utilities depend on two principal factors: cost of the moni-
toring infrastructure and the cost of the processing of false positives, which can be significant for
real world systems: −βiV CFP−CM. The first of the two components estimates the number of false
positives (βiV ) and the total cost of their assessment (βiV CFP), while the second term captures
the fixed cost of monitoring, such as the infrastructure cost and fixed operation costs.

The size of these two terms is non-negligible – the number of false positives can rival or outnumber
the number of real incidents in open networks, and false positives would typically significantly
outnumber the true positives on internal, well-managed networks. These two terms are also the
main reason why the IDS game is not a zero sum game, as they introduce a fundamental non-
efficiency into the system.

3.2.2 Architecture for Game-Theoretic Online IDS Reconfiguration

In this key section, we will describe the integration of the game-theoretical model with the adap-
tation process of a particular IDS. This integration consists of several steps: dynamic parameter
estimation in the system, game definition, game solution and integration of results back into the
system.

Game Integration Techniques

There are two existing integration options addressing the problems from the opposite sides of the
spectrum:

– Off-line integration, when the game is defined in design time, solved analytically, using priori
knowledge about expected impacts and success likelihood of the attacks, and the system
parameters are fixed to resulting strategies according to game results[57]. This is the most
traditional way of using the game theoretical methods, as their use ensures that the system
parameters are set to force the adversary into the selection of less damaging (or more rational)
strategies. The advantage of this approach is relatively easy solution identification and
low technical difficulty, but the disadvantage is the fact that the game solutions identify
the behavior that is advantageous on average, and do not reflect the dynamic changes of
assumptions, threat characteristics and background traffic. This is sufficient for systems
deployed in stable environments, but most IDS need to cope with dynamic environments,
where the background traffic and other factors change frequently. In such environments, the
static (albeit mixed) strategies covering such wide range of environments perform poorly.
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– Direct on-line integration, when the game uses presumed adversary actions in the observed
network traffic to define the game is the opposite approach. The game is being defined by
the actual actions of real-world attackers executed against the monitored system. This ap-
proach addresses the problem with game definition relevance by using the actual attacks and
traffic background to define the game at runtime. The game is then solved as an optimiza-
tion problem, but with several drawbacks. Direct interaction between the adversary and
the adaptation mechanism makes the system potentially vulnerable to attacks on machine
learning and adaptation algorithms [6], making the whole IDS potentially less secure than
without the use of game-theory driven adaptation. Motivated attacker can easily mislead
the IDS by insertion of a sequence of attacks that are orthogonal to its actual plan, and that
would make the IDS less sensitive w.r.t the actually dangerous attacks.

Simulated incidents
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Figure 3.1: Indirect online variant of integration of the game with IDS.

Our approach, named indirect online integration [46] combines the above approaches and provides
interesting security properties desirable for real-world deployment. The solution uses the concept of
challenges to mix a controlled sample of legitimate and adversarial behavior with actually observed
network traffic and is a compromise between the above approaches (see Fig. 3.1). In this case, the
real traffic background (including any possible attacks) is used in conjunction with simulated
hypothetical attacks within the system. These attacks are then mixed with the real traffic on
IDS input and the system response to them is used as an input for game definition. The major
advantage is higher robustness w.r.t strategic attacks on adaptation algorithms, and lower system
configuration predictability by the adversary, as the simulation runs inside the system itself and
its results cannot be easily predicted by the attacker.

This approach offers the optimal mix of situation awareness and security against engineered inputs.
In this case, we actually play against an abstract opponent model inside the system, and expect
that the moves that are effective against this opponent will be as effective against the real attacks.
The advantage of this approach is not only in its security, but also in better model characteristics
in terms of strategy space coverage (less frequent, but critical attacks can be covered), robustness
and relevance – the abstract game can represent the attacks and utility combinations that would
be obvious only for insider attackers.

51

Distribution A:  Approved for public release; distribution is unlimited.



January 16, 2012 Final Report

Indirect Online Integration

The use of the indirect online integration in practice requires a division of the covered time interval
into sub-intervals defining each single game is a sequence. The length of such interval depends
on the IDS technology used, line speed, hardware performance and other factors – it can vary
between few seconds for pattern-matching packet filters to few minutes/hour for statistical anomaly
detectors.

During each interval t, the system measures/estimates the values of parameters (in particular the
detection probabilities αi,j and the false positive probabilities βi). For the reasons listed above, we
suggest the use of challenge-based parameter estimation [46], which relies on insertion of known
instances of legitimate or malicious behavior into the background, unclassified traffic. We measure
the system response to these challenges, drawn from the realistic attack classes, and use them
to estimate the system response to all real-world samples from the same classes. In practice,
we will define one class for each broadly defined attack/legitimate traffic type and measure the
difference between the system response to legitimate traffic and to various classes of malicious
traffic. The adaptation process will then assess the statistical properties of the response and use
them to estimate the detection probabilities αi,j and the expected ratio of false positives βi for
given defender’s strategy i. It is worth noting that this method is based on the assumption that the
response of the detection method used in the IDS against members of each class is consistent and
that the anomaly scores of the class members are distributed according to normal distribution. This
assumption has been verified in our past work, and can be ensured as the attack class definition
is under the full control of game designer – if the response to one of the classes is for example
multimodal, it can be easily split into two separate classes.

The game definition ordering with respect to each time interval also depends on the type of the
underlying IDS. The CognitiveOne system introduced in the Appendix is a NetFlow based collective
anomaly detector, and therefore processes the data in well-defined and regularly produced batches
rather than in real time - this means that the game is actually defined after the data has been
recorded. In case of traditional pattern matching IDS that needs to operate on wire speed, the
game needs to be defined and solved beforehand, so that the strategies can be applied directly
to each processed packet, flow or connection. In practice, this means that the systems solving the
game after the interval t on which the solution is applied have precise parameter estimations for
each particular interval, while the wire-speed systems would apply the t-th game results to the
interval t+ 1.4

In both cases, once the system obtains the game definition and solves it, it can directly apply the
results back into the system configuration and use then on current or next time interval.

Game Strategies for Real World IDS

The existing self-monitoring capabilities of the CAMNEP system are essential for online empiri-
cal estimation of the key utility function coefficients αi,j and βi, as their values typically evolve
throughout the day.

The CAMNEP system is based on a self-organized, multi-level collaboration of detection agents,
each of them maintaining an different model of traffic normality/anomaly. The agents share the

4The slight delay of application is unlikely to cause a problem, as suggested by our experimental results. The
system using the parameters weighted over 5 last intervals performed comparably with the one using only the precise
values for the specific interval.
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anomaly estimates at various stages of processing and once they have reached their partial con-
clusions (anomaly scores for each network flow/connection), the system needs to aggregate these
opinions together. At this stage, it is important to notice that the performance of individual
detection agents and their combinations varies with background traffic and attack types.

The defender strategies in CAMNEP are instantiated as specific aggregation functions used
to integrate the opinions of detection agents in the system. Defender’s strategy selection is thus
technically straightforward, as it only picks one particular aggregation operator that aggregates
diverse expert opinions with particular weights or methods. In our experimental system, there
were 30 operators aggregating the opinions of 6 detection agents in total.

3.2.3 Experimental Evaluation

For the single-stage game we verify the capability of the system to detect a real-world attack and
compare various game-solving method with the trust used in the original CAMNEP system. To
measure the quality of detection, we have to define new criteria, as the one used for challenge
insertion evaluation cannot be applied to external attacks for the lack of data. Therefore, we use
the criteria:

E =
θ̄all − θ̄x
σall

(3.4)

where the θ̄all is the arithmetic mean of the anomaly values of the whole observed traffic, θ̄x is the
arithmetic mean of the flow anomaly values of the measured attacks described above and σall is the
standard deviation of the whole traffic anomaly values. Higher values are better, as they ensure
better separation of the anomalous traffic. Table 3.1 shows how the individual solution concepts
can select the strategies that separate the individual attack types from the legitimate traffic. We
can clearly see that some of the attacks are more difficult to detect (Horizontal UDP scan), and
result in negative values of the criteria, as the traffic is less anomalous than the average flow. The
aggregate results shown in the last two lines confirm the assertion (iii), as the results of all three
methods are closer to each other, and two GT concepts outperform Trust in case of longer time
horizon (MM5, NE5 and Trust5 columns). The assertion (iv), which postulates that the values
with longer time horizon shall outperform the short-term horizon columns, does not hold, as it is
only true for the Nash equilibria. The assertion (v), the key hypothesis that this paper tries to
disprove, states that the game theoretical methods may underperform the trust-based solutions
in the situations when the opponent does not behave strategically. The difference in performance
is due to the randomization and inefficiencies related to second-order strategic behavior. This
(rather pessimistic) hypothesis does not hold. While the game theoretical methods score slightly
less, the actual lost utility is surprisingly low, lower than the difference due to the use of longer
history in directly optimizing trust function. This is also evident on Fig 3.2, where we can see
the performance of different solution concepts on the incident inserted over time (The function
comb-like pattern is caused by the fact that not all time period contain the real attacks). The
figure shows that all solution concepts score very close to each other, and that the penalty related
to their use can be neglected.

Next we have made comparisons of trust-based adaptation and single stage game adaptation when
using only random generated challenges, planned challenges or both together. In these experi-
ments we are measuring so called score. The score represents the distance between malicious and
legitimate parts of the testing flows sets. In more detail the score is defined as:

score =
sgn(θ̄mal − θ̄leg)(θ̄mal − θ̄leg)

σleg + σmal
(3.5)
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Table 3.1: Average value of E over all datasets for each solution concept with respect to attack
classes.

MM1 MM5 NE1 NE5 Trust1 Trust5 Avg. fct. Best fct.

SSH brute force 4.141 4.153 4.115 4.215 4.318 4.057 3.862 5.527
Vert. TCP scan with OS detection 0.840 0.869 0.783 0.852 0.885 0.908 0.780 -1.245
Vert. UDP scan 2.200 2.191 2.112 2.177 2.252 2.306 2.030 0.262
Horiz. TCP scan for SSH 1.158 1.305 0.471 1.191 0.977 0.561 0.639 2.560
Horiz. UDP scan for DNS -1.735 -1.376 -1.590 -1.375 -1.416 -1.749 -1.464 0.852
Horiz. ICMP ping scan 4.787 4.107 4.296 4.282 4.884 4.626 4.185 8.775
Horiz. TCP scan for several services 3.069 2.970 3.064 2.980 2.965 3.031 3.191 4.015

Sum 14.459 14.218 13.251 14.323 14.866 13.740 13.222 20.745
Average 2.066 2.031 1.893 2.046 2.124 1.963 1.889 2.964
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Figure 3.2: Performance of solution on real attacks over time, using the criteria 3.4.

where the θ̄mal is the arithmetic mean of the trust values of the malicious flows, that were manually
labeled in the traffic, the θ̄leg denotes the arithmetic mean of the trust values of the legitimate
flows and σleg, σmal denotes the sigma of the legitimate and malicious flows respectively.

Figure 3.4 shows the comparison of the score values of the presented challenge insertion processes
when using trust-based adaptation. From the figure can be seen that using only planned challenges
approach we can obtain the best results. The reason for the combination of both available insertion
processes to perform so poorly is the volume of the simulated traffic. When using both approaches
together, the volume of the inserted flows is more than twice greater than the volume of the real
network traffic.

54

Distribution A:  Approved for public release; distribution is unlimited.



January 16, 2012 Final Report

0 20 40 60 80 100 120 140
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

 

 
Score without GT using plans
Score without GT using normal adaptation
Score without GT using plans along with normal adaptation

Figure 3.3: Comparison of the performance of the system that uses one trust-based adaptation
process with only planned challenges, challenges from the trust-based adaptation process and
combination of both challenge insertion processes.

Figure 3.4 similarly to the Figure 3.4 compares performance of the challenge insertion approaches
when using one stage game adaptation. caused by the fact that contrary to the trust-based
adaptation the one stage game does not maintain any history and thus is not leveled off by the
history values.

3.3 Adversarial Plan Recognition Game

In the reminder of this chapter, we will develop a more complex game model. It takes into account
the progression of the game in time and the gradual computation of the defender’s belief about the
plan executed by the attacker. The problem solved by the game is in principle a plan recognition
problem.

Intention and plan recognition is an important capability of an intelligent system. It enables coor-
dination with other agents in situations where explicit communication is not possible or desirable.
The techniques for plan recognition has been studied in the context of unobtrusive intelligent as-
sistance to people or coordination of robotic systems. However, most of the approaches to plan
recognition assume that the agent, plan of which is being recognized, is either indifferent about
the recognition process, or actively cooperates and gives hints that make the recognition process
easier.

On the other hand, the problem of recognizing a plan of an agent with adversarial utilities is a much
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Figure 3.4: Comparison of the performance of the system that uses one stage game-based adapta-
tion process with only planned challenges, challenges from the trust-based adaptation process and
combination of both challenge insertion processes.

less studied problem. We term this problem as adversarial plan recognition, and we understand it to
be a problem of recognizing a plan or intentions of an adversary that is aware of the presence of the
recognition process and actively tries to avoid it while pursuing some other tasks. The adversary
may choose actions that are hard to detect, or use deception techniques to make the recognizer
waste its resources. The adversarial plan recognition is widely applicable in various domains, in
which longer and repeated mutual interaction of adversarial agents is common. Examples can be
found in warfare scenarios, scenarios from different security domains, or computer networks. The
latter is the main use case we use for experimental validation of the proposed techniques.

The competitive characteristics of the goals of interacting agents in the problem of adversarial
plan recognition directly lead to the usage of game-theoretic approach for solving the problem.
Therefore, we define the problem of the adversarial plan recognition as a two-player zero-sum
extensive-form game between the attacker and the defender. None of the players can directly ob-
serve the actions taken by the other player; however, we assume that the defender receives some
noisy probabilistic observations from the environment about the actions of the attacker. In our
approach we show that thanks to the special structure of the game, the size of the game repre-
sentation can be substantially reduced. Moreover, if the actions of the defender do not have any
preconditions and the probability distributions of the observations depend only on the last action
of the defender, the best response (given the strategy of the attacker) can be computed quickly.
We utilize both of these findings and introduce a novel algorithm for the problem of adversarial
plan recognition, that is based on the current state-of-the-art game-tree search algorithms, Monte-
Carlo Tree Search (MCTS), and that good approximates the optimal solution under real-world
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time constraints.

3.3.1 Assumptions

Following the game-theoretic methods we define the adversarial recognition problem to be a game
between the attacker trying to achieve some of its goals unobserved, and the defender using different
sensors (action classifier) to detect the plan of the attacker. Such a game can be in general
computationally intractable due to the presence of an uncertainty and possibly large strategy
space of both players. Therefore, we pose following assumptions for the game model we use in our
approach:

– Both players, the attacker and the defender, are rational. We assume that the
players choose actions that optimize their utility based on the information available to them.

– All actions of the attacker have equal length. We assume that the game is played in
discrete stages and the attacker executes exactly one action in each stage.

– The defender can use only one classifier at a time. The resource limitation of the
defender does not allow execution of more than one classifier at a time. Note, that even an
assembly of classifiers can be seen as a single classifier.

– Single attacker executes a single plan. We assume that the game is played against a
single attacker that executes only one action at a time.

– Both players know the full plan library of the attacker. Both players know the set
of all plans that can possibly be used by the attacker.

– The quality of the classifiers does not change during the game. The quality of the
classifiers defined by their confusion matrices stays the same in all stages of the game.

– The available classifiers and their quality are known to both players. Both players
know how many classifiers are used by the defender as well as their exact confusion matrices.

Of course, the assumptions can come at the cost of limited expressiveness of the proposed game
model; hence, we discuss in Section 3.7.2 whether these assumptions are satisfied in the domain of
computer network security and which of them can be relaxed.

3.3.2 Extensive Form Games

Let us define an imperfect-information extensive-form game (EFG) that we use further. The game
is a tuple G = (N,Aa, Ad, An, H, Z, ρ, σ, u, I, π), where:

– N is a set of players; we assume there are two actual players – the attacker and the defender.
The third player – termed Nature – is modeling the stochastic nature of the game in terms
of uncertainty in the effects of the actions

– Aa (Ad respectively) is a set of actions available to the attacker (or to the defender respec-
tively)
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– An is a set of actions for the Nature player that reflects the uncertainty in the environment –
the actions of the Nature player represent the responses of the system in terms of detecting
or not detecting an anomalous event and its correct classification; for simplicity we assume
An = Aa

– H is a set of nonterminal choice nodes;

– Z is a set of terminal nodes, disjoint from H;

– ρ : H → N is the player function, which assigns to each nonterminal node a player i ∈ N
who chooses an action at that node;

– σ : H × {Aa ∪ Ad ∪ An} → H ∪ Z is the successor function, which maps a choice node and
an action to a new choice node or terminal node such that for all h1, h2 ∈ H and a1, a2 ∈ A,
if σ(h1, a1) = σ(h2, a2) then h1 = h2 and a1 = a2;

we denote σ(h) ⊆ H to be a set of all successors of a node h ∈ H;

we denote σ(H ′, a) ⊆ H to be all successors of nodes H ′ ⊆ H such that σ(H ′, a) =⋃
h∈H′ σ(h, a);

finally, we use index of the player ρ(h) = i to emphasize which player is currently making
a decision – σi(h)

– u = (ua, ud), where ui : Z → R is a real-valued utility function for player i ∈ N on the
terminal nodes Z.

– I = (Ia, Id) is a set of information sets for the attacker and the defender, where Ii =
(Ii,1, . . . , Ii,ki) is a partition of {h ∈ H : ρ(h) = i} for the attacker or the defender i,
and ρ(h1) = ρ(h2) whenever there exists a j for which h1 ∈ Ii,j and h2 ∈ Ii,j .

– π : H × σ(H) → [0, 1] is a probability distribution on the successors of the choice nodes of
the Nature player σn(h) (i.e. ρ(h) = Nature). The choice nodes of the Nature player act as
chance nodes.

3.3.3 Adversarial Plan Recognition Game

The adversarial plan recognition game (APRG) is an imperfect-information zero-sum extensive-
form game between the attacker and the defender.

Actions Any sequence of the actions of the attacker forms so called attack plan. Since many of
the plans of the attacker begins with the similar sequence of actions, the set of all possible attack
plans of the attacker forms an attack tree, where the edges correspond to the different actions of the
attacker. Utility values for both players are assigned to each leaf of the attack tree, and the values
represent the pay-off (the penalty) for the attacker (the defender) in the case that the attacker
completes its plan according to the path from the root of the tree to the leaf unobserved.

The actions of the defender represent a selection of one from a fixed set of classifiers (d1 . . . dm).
Each of the classifiers has a different quality of correctly detecting various attacker’s actions. For
each classifier, there is a known probability of detecting some of the actions given the attacker’s
real action. We call the detection of an action by a classifier an observation. Now, for a classifier
dj , the probability of detecting an observation oi given attacker’s action aj is denoted as Pj(oi|ai).
The probabilities are given by a normalized confusion matrices, such as the one in Figure 3.5. In
this example, the classifier d1 is reasonably good in detecting action a2 and a3. The classifier d2 is
very good at detecting action a1.
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d1
a1 a2 a3

o1 0.5 0.1 0.1
o2 0.2 0.7 0.1
o3 0.3 0.2 0.8

d2
a1 a2 a3

o1 0.9 0.3 0.2
o2 0.1 0.3 0.4
a3 0.0 0.4 0.4

. . .

Figure 3.5: Example confusion matrix.

We assume that the game progresses in simultaneous moves. In each move, the attacker chooses
a next action; the defender selects a single classifier. We assume that the defender’s resource
limitations do not allow using more than single classifier at a time. Then, nature selects the
observation based on the confusion matrix and the next move is started.

Information Neither of the players can directly observe the actions of the other player. The
defender can observe its own actions (selection of the classifiers) and the observations generated
by the classifier. The attacker can observe only its own actions.

Information set

a1 a2...a4 None

d1

a1 Nonea2...a4

d2

a1 Nonea2...a4

d3 d1d2d3d2 d1d2d3d1

a1 Nonea2...a4

d3

a1 Nonea2...a4

... ...... ...............

Figure 3.6: Portion of the extensive-form represenation of the game. The leafs in the picture are
not actual leafs in the game, the game continues for large (possibly infinite) number of steps.

Part of the complete extensive-form tree of the game is in Figure 3.6. The tree of the game
can be arbitrarily deep. The longest branch is three times longer than the length of the longest
attack plan. Hence, the leaves in the figure are just root nodes of subtrees omitted for clarity.
Three plies of nodes are periodically repeating in the tree. The attacker’s decision nodes (red),
the defender’s decision nodes (blue) and the observation nodes (green). The attacker’s decision
nodes must respect the attack tree; hence, the available actions in one stage of the game are based
on the actions performed by the attacker in the previous stages. The defender’s decision node
contains always the same set of actions corresponding to the different classifiers. The observation
nodes are chance nodes with probability distribution based on the classifier quality matrices and
the preceding actions of the attacker and the defender. The structure of the information sets is
consistent with the assumptions stated above as well as with the intuition of simultaneous moves
of the players. We refer to the three plies of different players starting with the attacker’s decision
as a move.

Utilities The utility function of the game captures the aims of the players described in the
adversarial plan recognition problem. The utility value for the attacker therefore directly depends
on the payoff g for the executed attack plan from the attack tree. Moreover, the value is discounted
according to the number of times an action from the executed plan has been correctly observed:

uA(a1 . . . ah, d1 . . . dh, o1 . . . oh) =
g(a1 . . . ah)

1 +
∑
i∈{1...h};oi=ai 1
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In the following we assume the game to be zero-sum, which is a natural assumption in the ad-
versarial plan recognition; hence, this value is maximized by the attacker and minimized by the
defender. However, as the presented methods in our approach are mostly independent of exact
utility definition, this assumption does not have any significant impact on the complexity of the
problem.

Solution Concept While selecting appropriate solution concept for the adversarial plan recog-
nition game (APRG), we need to consider the aspect adversarial plan recognition problem. From
the game-theoretic viewpoint, the most fundamental solution concept for imperfect-information
extensive-form games is the Sequential Equilibrium, a refinement of the Nash Equilibrium concept
and an imperfect-information-equivalent of the known subgame-perfect Nash equilibrium used in
perfect-information extensive-form games [51]. This solution concept is suitable also for our prob-
lem. In the case of perfectly rational opponent, a Sequential Equilibrium describes the optimal
strategy that guarantees the smallest possible loss for the defender and the highest possible gain
for the attacker in the long run. The solution of the APRG will most likely be in the form of mixed
strategies5, since a deterministic selection of some action of the attacker would allow the defender
to use the classifier with the best chance of detecting the performed action.

3.4 Solving Imperfect Information Extensive Form Games

Generally speaking, the adversarial plan recognition game (APRG) belongs to the class of extensive-
form imperfect-information non-zero-sum games (II-EFG), for solving which there is a number of
existing algorithms. In this section we thus give a brief description of these algorithms and discuss
their applicability for the APRG.

3.4.1 Mathematical Programming

The exact algorithms for solving II-EFG are generally based on formulating the problem of finding
the desired equilibrium (usually Nash Equilibrium, or its refinement Sequence Equilibrium) in
the form of mathematical programming. Two basic options for computing Nash equilibria are
summarized in [51]. The more efficient one is based on sequence-form representation of EFG. The
sequence-form of EFG consists of (1) a set of all performable sequences of actions for each of the
players, (2) a function that assigns payoffs to each combination of sequences for all players and
(3) a set of linear constraints. In our game, if l is the look-ahead we use for playing the game, the
size of the sequence form of our game is O(|Aa|l + |Ad|l + |An|l). The mathematical program for
solving the sequence form game is a Linear Complementary Program of size polynomial in the size
of the sequence-form of the game. The best known general algorithm for solving these programs
is exponential in the size of the program. As a result, it is not likely that this algorithm will be
usable for realistically large games. The situation is a simpler for zero-sum games, for which NE
solution can be obtained by LP. However, the size of the game is most likely still prohibitive.

3.4.2 Counter-factual Regret Minimization

A little more practical algorithm for solving zero-sum II-EFG was developed by Zinkevich [62].
The counter-factual regret minimization (CFR) was used for creating a poker agent that was able

5Mixed strategy is a probability distribution among the actions of the player in each stage of the game since we
have a game with the perfect recall.
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to reach human expert level in simpler variants of the game.

The algorithm starts with a random strategy for each of the players and uses fictitious play to
update the strategies. In each iteration, the strategy of one player is fixed and the strategy of
the other player is updated in order to minimize the overall regret of the agent felt when playing
against all the opponent strategies from the previous iterations. The strategy of the other players
is adapted the same way in the following iteration.

This algorithm is guaranteed to eventually converge to a Nash equilibrium of the game and during
the process, it can output a bound on the quality of the solution. However, the speed of convergence
has been shown to be acceptable only experimentally. The original variant of the algorithm requires
traversing whole game tree in each of the iteration and it took two weeks to compute competitive
Poker strategy. A more advanced Monte-Carlo (MC) sampling version of the algorithm has been
introduced[33], and might be considered for solving our game. However, the result is not likely to
be positive.

The main reason why CFR algorithm has been successful in solving Poker is that a player in Poker
has relatively small number of possible information sets. Most of the information (opponent’s
cards, cards in the pack) is unknown all the time. The number of information sets is much larger
in our game. The players can observe their own actions as well as the actions of player Nature.
The number of information sets of one player is O

(
(|Aa|+ |An|)l

)
and all of them must have

a permanent record stored during the computation. Even the MC variant of the algorithm has
to iterate over the whole tree in the first iteration. The size of the tree (and the worst case
computational complexity of one iteration) is O

(
(|Aa|+ |Ad|+ |An|)l

)
.

3.4.3 Information Set Search

Information set search (ISS) [37] is a heuristic method for playing II-EFG that has been successful
for example in Kriegspiel (imperfect information variant of Chess). However, it is a heuristic
algorithm that does not provide any bounds on the quality of the produced solution. The main idea
of the algorithm is substantial reduction of computational complexity by searching only through
the information sets that belong to the player using the algorithm. The actions of the opponent are
substituted by operations on the information sets that could possibly be the effect of the opponent’s
actions. For example in visibility-based pursuit evasion domain [40], the actions of the pursuers
are all possible moves of the agents and the actions of the evader are substituted by operation
revealing the position of the evader on each position that became visible by the previous move of
the pursuer or to an information set representing all possible locations of the evader that are not
currently observable.

This algorithm is quite efficient, but it cannot be directly used the APRG. The main problem is
that the algorithm cannot work with chance nodes that are crucial for our application. Moreover,
the algorithm is based on the fact, that the actions of the opponent can directly influence the
information set of the player. In our game, the actions of the opponent influence the information
set only indirectly and probabilistically.

Paranoid Search

The goal of the paranoid search is to find a strategy that maximizes the utility of the defender
against the worst-case attacker. We describe the action-selection in each choice node of the defender
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and back-propagation of the utility values in each node (in each node we assume that we received
the values from each of its successors).

The leaves of the game-tree propagate back their assigned value (either utility value of a terminal
node, or an utility value estimated by an evaluation function in case the end of the look-ahead l).
In chance nodes (nodes of the Nature player) value propagated to its predecessor is the expected
utility of that node – each value returned from a successor σn(h, r) is multiplied by associated
probability πr of that choice (i.e. either πpos, πneg, or πa depending on the position of the node h
in the game-tree).

In the defender’s choice nodes the algorithm selects an action that the defender is supposed to play
and again propagates some value to the predecessors. As we are dealing with imperfect-information
game, the defender cannot distinguish between nodes in the same information set. Therefore we
select the same action and propagate the same value in all nodes from the information set. Let
assume we are in a node h ∈ H, ρ(h) = d and there exist some j for which h belongs to the
information set h ∈ Id,j . Now, as we assume that we are playing against the worst-case opponent,
we need to select such action that maximizes minimal defender’s utility value resulting from the
action:

max
o∈Ad

min
h′∈σd(Id,j ,o)

ud(h
′)

Finally, in the attacker’s choice nodes we simply propagate the value received from its successors
upwards. This is sound, because (1) all successors of an attacker’s choice node are in the same
defender’s information set, hence they all have the same calculated utility value; (2) the selection
of opponents action was made implicitly in selecting the defender’s action – if (as the defender)
we cannot distinguish between the states that are determined by the actions of the opponent we
assume the worst case.

3.5 Proposed Method Preliminaries

This section first introduces alternative, more compact representation of adversarial plan recogni-
tion game (APRG), which is later used as the bases of our novel solution method. Then, we briefly
present the main principles of the established Monte-Carlo Tree Search (MCTS) method, which
was used as bases of our novel algorithm. Finally, we analyze possible generalization of its core
component – the selection function – that would be applicable in imperfect information games.

3.5.1 Reduced Game Representation

The definition of the game above is a standard extensive-form game with imperfect information
and chance nodes and, in principle, it can be optimally solved by a standard algorithm for solving
the games, such as the linear program for sequence-form representation of the game[51]. The size
of the linear program is polynomial in the size of the game tree. However, the size of the game tree
is exponential in the number of actions of the players and the length of the game. The practical
games we focus on have tens of actions for each of the players and are played for tens of moves.
For example, if each player has 10 applicable choices in each decision node and the game is played
for 20 moves (corresponds to 60 plies) the size of the full game tree is 1060. As a result, even
traversing the whole game tree is computationally intractable.

On the other hand, the tree of the game has a very specific structure caused by the limited amount
of information available to the players. The attacker never learns any information about the
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defender’s actions and the defender learns all the information only via the chance nodes that have
a limited set of outcomes. As a result, the information sets of the players include a relatively large
number of nodes in the tree. This fact allows us to represent the game in a much more compact
way without any loss of information or the expressiveness of the computed strategies. The basis
of the representation is the concept of a signal tree [13]. A signal tree represents the space of all
possible developments of a game from a single player’s perspective. In general, plies of player’s
actions and observations are alternating in the tree. After any observation, a child corresponding
to each of the possible observations that follow the player’s decision is added. The signal trees are
closely related to information-set trees [38]. The only difference is that in a signal tree, multiple
observations of the player can lead to the same information set (there are multiple nodes in this
information set), while there is only a single node per information set in the information-set tree.

Figure 3.7: Signal trees of the defender and the attacker.

The attacker does not obtain any observation in the game. Hence, its signal tree is simply the
attack tree with all meaningful attack plans (Figure 3.7). The nodes of its signal tree uniquely
identify its information set. We denote the set of all attack tree nodes DA.

The defender obtains an observation after each decision. Hence, the signal tree of the defender
contains both observation and decision plys. We denote the observation nodes OD and the decision
nodes DD. I general, each decision node has exactly m children and each observation node has
exactly n children. However, forward pruning based on the domain-specific knowledge can be
applied. The depth of the defender’s signal tree is uniform and it is two times deeper than the
length of the longest attack plan.

Any branch from one tree in combination with a branch of the same length from the other tree
defines a unique history h in the extensive-form game – the full game tree. All histories that
correspond to the same node in the signal tree of a player belong to the same information set of
the player. Also, all information sets that exist in the full EFG are represented by a node in one
of the signal trees. Moreover, the children of the node represent all applicable actions of the player
in the information set, hence, any strategy of a player can be represented as probabilistic decisions
on its signal tree.

The size of the two signal trees is much smaller than the size of the full game tree. With the 10
choices and 20 moves, the size of the attacker’s signal tree is 1020 and the size of the defender’s
tree is 1040. It is still not possible to traverse the signal tree in a reasonable time, but the
reduction is substantial. In order to make this representation of the game equivalent to the full
game tree, we have to solve two issues. First, the chance nodes in the defender’s tree must become
more complex. In the full game tree, the chance nodes selected the observation based on a fixed
probability distribution. The distribution could have been different in each node. One chance node
in the defenders signal tree corresponds to many chance nodes in the full game. For a fixed sequence
of defender’s choices, each possible sequence of the attacker’s actions leads to a different chance
node in the full game tree. But with the signal tree representation, all the attacker’s sequences
of the same length lead to the same chance node. If the chance node were a simple probability
distribution, some of the information would be lost. On the other hand, the semantics of the
chance nodes are the observations of the action currently performed by the attacker. For the fixed
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choices of the defender, the probabilities of these observations depend only on the current (last)
action of the attacker. Hence, if the chance node stores a conditional probability P (An|Aa), we do
not lose any information about the distributions.

The second issue are the utilities. In general, any leaf of the full game tree can have a different
utility. The information about the utility cannot fit into the signal trees. That is why it has to be
stored/computed separately. This should not be a problem since large games are generally defined
in a succinct form, which includes an algorithm that can quickly compute the utility of any history
in the full game. For any two branches of the signal tree, the corresponding history in the full
game can be easily computed and consequently the same algorithm for computing utility can be
used.

3.5.2 Monte-Carlo Tree Search

The Monte-Carlo tree search (MCTS) algorithm is recently a very popular algorithm for solving
large perfect information games. It gained a lot of attention when it strongly improved the strength
of the programs playing the game of GO and allowed creating programs comparable to human
masters with minimal penalty. MCTS mains a part of the game tree close to the initial state. At
the beginning, this tree consist of only the root node and then it gradually grows more in the areas
that are promising for at least one of the involved players. The main step of any MCTS algorithm
consists of four procedures that are repeatedly called in the following order:

– Selection: Starts in the root note and descends down the already constructed part of the
tree based on the statistical information stored in the tree nodes, estimating their quality
and confidence bounds.

– Expansion: After it reaches the leaf of the already constructed tree, it adds a small sub-tree
rooted in the leaf to the maintained tree. Usually, not more than sub-tree of depth one is
added.

– Simulation: It chooses one of the leafs of the newly added sub-tree and runs a simulation
of the play following that point using random actions for each of the players and evaluate its
result.

– Backpropagation: It returns back to the root of the tree and on the way up, it updates
statistics in all the nodes using the result of the simulation.

The main idea of the algorithm is to use earlier iterations to create statistics that allow guiding
the later iterations to the portions of the search space that are more relevant for the game. The
output of the algorithm are the actions in the root node that lead to statistically most favorable
results for the agents that runs the algorithm. One of the main advantages of this method in
perfect information games is that it does not require strong heuristic evaluation function, as it is
in classical minimax-like search. The simulation can be run until the end of the game, where the
value of the game can be determined exactly.

3.5.3 Suitable Selection Function

The core component of MCTS is a selection strategy that optimizes the trade-of between explo-
ration and exploitation. The exploration is using more the seemingly better actions to guide the
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search to the more relevant parts of the tree. The exploitation is trying even the worse actions
often enough to be confident that they actually are worse.

The problem of exploration versus exploitation is formally studied on the model of multi-armed
bandits [24]. Hence, we refer to the method solving it as the bandit methods. The bandit method
most commonly used in MCTS is UCB1. The combination of MCTS and UCB1 is called UCT
[30]. It has been suggested for perfect-information alternating-moves games, in which it assures
convergence to the same results as the minimax algorithm. From the game-theoretic viewpoint,
the result of the minimax algorithm is optimal in these games. It is allowed by the fact that there
is always a pure Nash equilibrium in the games.

However, vast majority of games of imperfect information or even the games with perfect infor-
mation and simultaneous moves does not have a solution in the form of pure Nash equilibrium. In
that case, UCT is not guaranteed to converge to the optimal solution of the game [50]. For this
reason, we analyze alternative selection mechanisms for MCTS that would guarantee convergence
to mixed Nash equilibrium in games with simultaneous moves and possibly in the more general
imperfect information games.

Requirements and Related Work

A study, which is most relevant to this problem was performed by Teytaud et al.[55]. Instead
of the UCB1 selection function, they work with the EXP3 function [4] that captures the optimal
trade-off between exploration and exploitation for stochastic, or even adversarial, simultaneously
acting agents. The authors in [55] compare the quality of game playing of MCTS with UCB1 and
EXP3 and show superior performance of EXP3 on the game of Urban Rivals. However, this study
uses a mixture of UCB1 and EXP3 nodes in the tree and does not give any details about parameter
setting and numerically stable implementation, which appears to be crucial in application of EXP3.

EXP3 was successfully used also to play the game of tic-tac-toe with imperfect information in
[5]. The approach is similar then the one we suggest for the adversarial plan recognition games.
The algorithm is building a separate information-set tree for each of the players and performs the
MCTS simulations in both trees simultaneously.

We have selected EXP3 as the selection mechanism for our approach as well. Here we analyze
our requirements and the motivation for this choice. We first analyze the simpler case of MCTS
for games with simultaneous moves and then generalize the observation to the general imperfect
information setting. Applying MCTS in game with simultaneous moves is in principle very similar
to playing a sequence of repeated games with high uncertainty about the pay-offs of the games.
At the beginning, the algorithm has no information about the quality of individual actions and
their combinations. The situation closely resembles the unknown game setting from multi-agent
learning theory. There are several multi-agent learning algorithms that are able to learn optimal
strategies in repeated play of an unknown game. Different classes of the algorithm have different
requirements and guarantees.

We aim to practical applications, so we have to avoid many algorithms that focus on showing some
specific convergence properties and do not provide efficint ways to converge quickly. For example,
a method called Regret Testing [21] suggests a method that randomly chooses a strategy from a
set of all possible strategy and tests the regret it causes. If it is too high, it randomly chooses a
different strategy.
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Fictitious Play is one of the first learning rules that lead to convergence to Nash equilibrium
of a game. In each iteration, it uses computes the best response to the current strategy of the
opponents. In order to compute the best response, it needs the statistics on opponent’s past
actions and the exact payoff matrix of the game. The first requirement could be satisfied in the
simultaneous moves setting, but the second prohibits using fictitious play even in this context.

No-regret Learning A more promising source of possible selection strategies for MCTS is No-
regret learning. It is a wide class of learning algorithms that allow selecting the best actions out
of a fixed set without putting any assumptions on the process that generates the payoffs. More
exactly, a learning algorithm exhibits no external regret if it can guarantee that the average regret
per iteration converged to zero. If two players play a repeated zero-sum game using a no-regret
strategy, their frequencies of using individual actions converge to the Nash equilibrium [17].

Even though no-regret learners converge to Nash equilibrium, some of the algorithms are still not
usable for our purpose. For example, [17] presents a no-regret learning mechanism which allows
convergence with average regret scaling as O(lnT/T ) if both players honestly follow a protocol.
This could be achieved in simultaneous moves games, but it would be much harder to achieve in
general imperfect information setting, because the opponent can be in a different node of his tree in
each repetition of the games. Moreover, this approach requires a common assumption of so-called
Informed Online Decision Problem that cannot be satisfied even for simultaneous-moves games. It
assumes the agent is informed also about the payoffs of the actions it did not choose in the current
iteration.

If we drop this assumption and use only the reward of the applied action in the algorithm, we have
Näıve Online Decision Problem. It fully respects our requirements. It assumes only the knowledge
about the set of possible rewards (interval is sufficient), number of actions available to the player
and the reward obtained for the selected action.

3.5.4 Exp3.1 Implementation Details

We base our implementation of EXP3 algorithm mainly on [3]. The main difference from the
original paper [4] is that the algorithm maintains an estimate of aggregate pay-offs for each arm
instead of the weights, which in [4] quickly grow to the limit of computer floating point number’s
precision. We use the following variables to describe the algorithm:

– K – the number of actions available to the agent.

– pi – the probability of using action i in the current round.

– gi – the reward gained for using action i in the current round normalized to interval [0, 1].
We define this value to be zero for the actions that are not used in the current round.

– Gi =
∑t
s=1

gi,s
pi,s

– is the cumulative gain.

– γ ∈ (0, 1] – is the exploration parameter representing the probability of using a random
action.

– fi – the number of times action i has been used

The algorithm EXP3 follows.

pi = 1/K; Gi = 0; fi = 0
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for t = 1, 2, . . . do
Draw action a from distribution p.
fa = fa + 1
Ga = Ga + ga

pa

pi = (1− γ)
exp( γKGi)∑K
k=1 exp( γKGk)

+ γ
K

end for

This algorithm works well in theory, but in practice, the exponential terms quickly grows to infinity.
This can be partially solved by a sufficiently small exploration parameter γ. However, in MCTS,
it is hard to use the parameter to keep the numbers within the range of the computer’s precision.
We need sufficiently large exploration to avoid getting stacked in local minima and we do not know
how many iterations will we make in a node. That is why we transform the probability update
rule to a computationally more stable form.

exp( γKGi)∑K
k=1 exp( γKGk)

=
exp( γKGi)

exp( γKGi)(
∑K
k=1 exp( γK (Gk −Gi))

=
1

1 +
∑K
k=1; k 6=i exp( γK (Gk −Gi)

(3.6)

The second issue is the exploration parameter. If we want to assure convergence to the Nash
equilibrium, the size of the parameter has to converge to zero. Otherwise, each action is chosen
with probability at least γ/K which is not likely to be true in a Nash equilibrium. In order to
guarantee the convergence to NE, [4] proposes algorithm EXP3.1. It runs the algorithm EXP3
in a sequence of epochs, each with a different setting of γ. The paper assumes restarting the
algorithm EXP3 at the beginning of each epoch. This seems wasteful and we have better results
with adjusting the parameter and continuing the algorithm. Hence our version of EXP3.1 is
following.

gr = (K lnK)/(e− 1); γ = 1
loop

Execute one iteration of EXP3 with current γ.
if maxiGi > gr −K/γ then
gr = gr ∗ 4; γ = γ/2

end if
end loop

The algorithm exactly follows the equations in [4]. If the estimate of the cumulative reward of
the best action reaches the current bound gr, the exploration parameter is decreased and the new
bound is set.

3.6 Proposed Method for Solving APRG

The size of the game is too large to compute even an approximation of the optimal solution with a
strict quality guarantee. Most methods that attempt to do that need to represent the strategy in
each information set of the game. For the defender, each sequence of observations defines a valid
information set. With 10 observations and the depth of the game around 20 moves, the size of the
data structure is prohibitive. That is why we choose tree search techniques to play this game.
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3.6.1 Concurrent Monte-Carlo Tree Search

The method we use for computing the strategy in the game is based on concurrent construction
of both the attacker’s and the defender’s tree in Monte Carlo manner. It is a generalization of
the Monte Carlo tree search [30] to imperfect information games. A similar approach has been
proposed by [5] and applied to the game of phantom tic-tac-toe. However, we had to extend the
algorithm in two directions to make it applicable to our problem. The first one is handling of
the conditional chance nodes that appear in the defender’s signal tree. The second extension is
enabling the algorithm to improve the estimate of the solution of the game during the game play,
i.e., designing an algorithm for progression in the game tree.

The algorithm maintains two MCTS-like trees corresponding to the two signal trees defined in
Section 3.5.1. We present the pseudocode of the algorithm in Figure 3.8. At the beginning of the
algorithm, both trees contain only one node – the root. We denode the root nodes aRoot and
dRoot for the attacker and the defender respectively. The main loop of the algorithm performs
identical iteration until it is out of time. It is an anytime algorithm. The more computation
time it has allocated the better is the result it produces. In each iteration, first the plan for the
attacker is selected (procedure selectAttack). Starting from the root node of the attacker’s tree,
the actions of the attacker’s plan are selected based on a suitable selection function, which balances
the exploration and exploitation (lines 1-6). When the selection reaches a leaf of the tree and it is
not the end of the attacker’s plan, new successors of the node are added to the tree based on the
attacker’s plan library. All the actions that can continue after the current history in the tree are
added to the tree (line 10). Then, the plan is competed randomly to a full plan of the attacker
(lines 13-17). At the end, the sequence of actions defining the attacker’s plan is returned (a1 . . . ah).

Next, a plan for the defender is selected in a similar way (procedure selectDefence). In the
defender’s decision nodes in the defender’s tree, a suitable MCTS selection function is applied
(line 4). Remember that in the observation nodes, conditional probability distributions P (oj |ai)
are stored. The algorithm has first selected the plan for the attacker, hence, we can identify the
right distribution based on the action applied in the attacker’s plan in the stage corresponding
to the current node in the tree (line 7)6. If the observation node is already the leaf of the stored
part of the table, the tree progression is broke (line 10). Otherwise, the child of the observation
node is selected randomly according to the distribution (line 12). The selection of the defender’s
plan continues until either depth h (i.e., the length of the attacker’s plan) is reached or a leaf in
the defender’s tree is selected. In the latter case, the nodes that are the children of the selected
leaf are added to the tree (lines 16, line 23) and the state of the variables is modified so that
the simulation part can begin. If the depth of the defender’s plan is not still equal to the length
of the attacker’s plan, the rest of the defender’s actions are selected randomly and the resulting
observation are computed (lines 26-32). At the end of this stage, we have the full defender’s plan
and the observations it produced (d1, o1, d2, o2, . . . , dh, oh).

With the plan of the attacker and the defender’s observations, we can compute the utility function
of the players in the Main procedure (line 4). The utility is then distributed in both trees as in
MCTS. Starting in the leaf of the trees where the samples left the stored trees, the statistics in
the nodes are updated. Afterwards, next iteration of the algorithm starts.

6Here we assume that the observation depends only on the attacker’s and the defender’s action. It is so if the
quality of the classifiers does not change during the game.
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Procedure: Main

1: loop
2: (aLeaf, aPlan) = selectAttack(aRoot)
3: (dLeaf, dPlan, Observations) =

selectDefense(dRoot, aPlan)
4: u = utility(aPlan, Observations)
5: backPropagate(aLeaf, u)
6: backPropagate(dLeaf, u)
7: end loop

Procedure: selectAttack(aRoot)

1: curNode = aRoot
2: while curNode is not leaf do
3: action = select(curNode)
4: aPlan = aPlan + action
5: curNode = child(curNode, action)
6: end while
7: if curNode is plan end then
8: return (curNode, aPlan)
9: end if

10: addNewChildren(curNode)
11: aLeaf = select(curNode)
12: curNode = aLeaf
13: while curNode is not plan end do
14: action = random(curNode)
15: aPlan = aPlan + action
16: curNode =

createNodeAfter(curNode, action)
17: end while
18: return (aLeaf, aPlan)

Procedure: backPropagate(node, u)

1: updateStatistics(node,u)
2: if node is not root then
3: backPropagate(parent(node),u)
4: end if

Procedure: selectDefense(dRoot, aPlan)

1: curNode = dRoot
2: while curNode not leaf & length(aPlan) > 0

do
3: aAction = popFirst(aPlan)
4: dAction = select(curNode)
5: dPlan = dPlan + dAction
6: obsNode = child(curNode, dAction)
7: obs = confMatSample(dAction, aAction)
8: Observations = Observations + obs
9: if obsNode is leaf then

10: break
11: else
12: curNode = child(obsNode, obs)
13: end if
14: end while
15: if curNode is leaf & length(aPlan) > 0 then
16: addNewChildren(curNode)
17: dAction = select(curNode)
18: dPlan = dPlan + dAction
19: obsNode = child(curNode, dAction)
20: obs = confMatSample(dAction, aAction)
21: Observations = Observations + obs
22: else
23: addNewChildren(obsNode)
24: curNode = child(obsNode, obs)
25: end if
26: while length(aPlan) > 0 do
27: aAction = popFirst(aPlan)
28: dAction = random(curNode)
29: dPlan = dPlan + dAction
30: obs = confMatSample(dAction, aAction)
31: Observations = Observations + obs
32: end while
33: if curNode is leaf then
34: return (curNode, dPlan, Observations)
35: else
36: return (obsNode, dPlan, Observations)
37: end if

Figure 3.8: The concurent monte carlo tree search algorithm for the first stage of the game.
Procedures select and updateStatistics implement some MCTS selection strategy, such as UCT
of EXP3.
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Convergence of the Algorithm

We have implemented this algorithm under the hypothesis that it converges to the Nash equilibrium
of the game. We did not have time to analyze this hypothesis in more details within this project
so we do not provide a formal proof of this hypothesis. However, it will be a subject of our further
research.

It has been proven that in a one stage normal form game, the overall frequencies of using individual
actions with selection algorithm EXP3.1 converges to the Nash equilibrium, even if the exact
utilities in the game and the number of actions of the opponent are unknown to the players [17].
This fact has been used to create an algorithm for playing an imperfect information version of tic-
tac-toe [5], which is in spirit very similar to our algorithm. It uses separate trees for the players,
but does not deal with chance nodes and game progression. The author claims that even in this
setting, his algorithm converges to the NE of the extensive form game. However, he does not
provide a formal proof or extensive experimental evidence to support this claim. Anyway, his as
well as our experimental results indicate that this method can be used to create successful players
for imperfect information extensive form games and we believe that it should be possible to proof
the convergence for at least some restricted classes of games.

3.6.2 Continuous Reasoning

The algorithm described above finds a suitable course of action for both players at the beginning of
the games. In theory, the iterative algorithm can be run for a long time at the beginning and the
computed tree can then be used for playing the game without further computation. This approach
is not applicable in practice for several reasons. First, the size of the tree that would need to be
stored is huge. Second, the amount of computational time needed to compute a good strategy for a
node increases exponentially with the depth of the node in the tree. Third, the information about
the quality of the classifiers can change during the game. For these reasons, we choose to compute
the actions gradually, adding more iterations after each step of the game. We call the operation
on the pre-computed game trees at the beginning of the next stage of the game progression in the
game tree.

Bayesian Tree Fixation

We further describe the algorithm for the defender, which is the main focus of this project. The
progression in the game trees is performed separately for each of the trees. In the defender’s
tree, the progression is simple, because each player knows its own actions. Based on the selected
action and the actual observation in the game, the root of the defender’s tree is substituted by the
corresponding node on the second level of the tree.

The situation is more complex in the attacker’s tree. The defender does not observe the attacker’s
action so he cannot be sure about its current tree node in the later stages of the game. Instead,
the defender maintains a probability distribution among the possible nodes where the attacker
can be. Instead of moving the root of the tree, after each stage, one ply of the attacker’s tree is
fixed. Each node in the ply is substituted by a chance node with a fixed probability distribution
computed by Bayesian inference. The probability distribution computed by the concurrent MCTS
in the previous stage of the game serves as the a priory probability. The actual observation of
the defender is used as the evidence, which influences the probability trough the confusion matrix
corresponding to the classifier selected by the defender.
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If the defender observed an observation oj and the a priory (i.e, game theoretic) probability of the
attacker performing ai is P (ai) then the a posteriory probability can be computed as follows.

P (ai|oj) =
P (oj |ai)P (ai)

P (oj)
=

P (oj |ai)P (ai)∑n
k=1 P (oj |ak)P (ak)

(3.7)

The probabilities of different observation given an attacker’s action can be extracted from the
confusion matrix that corresponds to the classifier selected by the defender in the game.

After an upper part of the tree is fixed, the following iteration in the attacker’s tree proceed from
the root node solely based on the fixed probability distributions and the back-propagation of the
simulation value stops as soon as it reaches a fixed node. The ply following the previously fixed
ply takes place of the new root of the game and in the next stage, all the nodes in this ply is fixed
in the same way as described above.

Example 1. Assume there are three actions applicable in the root of the attacker’s tree in the
first stage of the game. After we run the concurrent MCTS for a period of time, the frequencies of
using the three actions converge to

P (a1) = 0.67 ;P (a2) = 0.33 ;P (a3) = 0.

Further assume that the defender used action d2 with the confusion matrix as in Figure 3.5 and
it obtained the observation o2. The a priory probability of the observation based on the confusion
matrix is

P (o2) = P (o2|a1)P (a1) + P (o2|a2)P (a2) + P (o2|a3)P (a3) = 0.163.

Then the probabilities of attacker’s actions we fix in the root node based on equation (3.7) are

P (a1|o2) = 0.4 ;P (a2|o2) = 0.6 ;P (a3|o2) = 0.

Low Probability Pruning

With the Bayesian fixing of the attacker’s tree, the attacker builds a probability distribution over
all possible plans of the attacker based on the approximation of its rational behavior and the noisy
observations produced by the classifiers. Unlike the tree of the defender, which is strongly reduced
by each progression, the attacker’s tree is only growing during whole game. With each stage of
the game, the number of nodes in the attacker’s tree that may be the attacker’s current node
increases exponentially. On the other hand, most of them will have very little probability. In
order to keep the computational complexity of the game progression low and to free some of the
memory allocated by the attacker’s tree, we decided to prune the branches of the attacker’s tree
with probability lower then certain threshold. We chose the threshold to be 1%.

Simple pruning The first pruning algorithm is less radical and we use it in the proof of concept
implementation of the algorithm. It prunes some parts of the tree, but it should not influence the
computed results substantially. It first fixes the probabilities in a node as described above. Then
it removes the actions with probability smaller than the threshold and their respective subtrees
from the tree. This algorithm reduces the size of the tree, but still allows exponential growth of
the number of the candidates for the current node in the attacker’s tree.

Strong pruning The second pruning algorithm we suggest uses a limited number of possible
current node candidates in each stage of the game. The algorithm stores a subset of nodes from
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the current ply in the attacker’s tree that are most likely to be the current attacker’s node. With
each node, it stores the probability that this node is actually the current node of the attacker.
In the first stage, this set contains only one node – the root – with 100% probability. After an
observation is received, the algorithm computes the probability for all children of the nodes in the
current subset. For each node, if the probability of some of its children is lower than the threshold,
the children are removed. If any of the children are left, they are renormalized to sum to the
probability of their parent and inserted to the subset of nodes for the following stage. With this
pruning and the threshold of 1%, there are never more than 100 root candidates in the current set.

3.7 Adversarial Plan Recognition Game in CAMNEP

There are several specific problems we need to address if we want to apply the algorithm from the
previous section to the network security domain in combination with CAMNEP.

3.7.1 Problem Mapping

We have designed the adversarial plan recognition game to be applicable to various domains, where
one player tries to execute a plan undetected and the other player uses noisy sensors to observe
the plan. However all the time, we had in mind also the application to network security, which is
the goal of this project. That is why the problem maps naturally to the defined model of APRG.
In the implemented system, one stage of the game corresponds to the 5 minutes long interval used
for anomaly detection in CAMNEP. The attacker has 13 basic actions that can be composed to
plans of various lengths based on their preconditions and the information gained by their execution
(see Section 2.3). Based on our assumptions, we assume that each 5 minutes long interval contains
exactly only one action of the attacker. The defender is represented by an intrusion detection
system. It has 22 different settings (corresponding to aggregation operators) that can be selected
as defender’s actions. The confusion matrices defining the quality of the operators are estimating
using challenges (see Section 2.4) and further discussed in the following section.

The presented model of APRG does not consider the false positives explicitly. They are a very im-
portant factor in the network security domain, because the attention of the network administrator
is a very scarce resource. The importance of the false positives can be reflected in the confusion
matrices. All the probability values corresponding to no action of the adversary and some observa-
tion of an action by the classifier are the false positives. Similarly, the values classified as no action
even though some action was performed are the false negatives. Most classifiers allow trading one
of these values for the other. If the classifier is not certain that it can classify an action correctly,
it can still report that no action has been seen to reduce the number of false positives. This will
naturally be reflected in the quality of the classification, but it is already represented in the model
in the form of confusion matrices. In our proof-of-concept implementation, we did not focus on
this aspect and we used the classifiers in the form as they were suggested by CAMNEP. Moreover,
in our implementation, the confusion matrices are computed only form the challenges modeling
malicious traffic, so false positive situations do not occur in the confusion matrices at all.

3.7.2 Validity of the assumptions

From the perspective of the application domain, we can divide the assumptions needed by the model
to two categories. The first category are assumptions that either hold in the model or can be shown
not to have a major impact on the performance of the solution. The second category are temporary
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assumptions, which does not fully hold in the real world domain, but importantly simplify either
design or computational complexity of the model. The later assumptions are very important
in research methodology, because they allow solving a simpler problem and then gradually add
complexity by removing the extra assumptions. If the system does not perform well even with
the additional assumptions, it is not likely to work without them and the core ideas should be
redesigned. Otherwise, the main principles seem promising and the research should focus on
whether and how it is possible to remove the additional assumptions.

Justifiable Assumptions

First we review the assumptions of the model that are reasonable in the network security domain.

Both players are rational This adversarial planning recognition game is a part of complex
intrusion detection system that focuses on detecting sophisticated attacks. A sophisticated attacker
knows exactly what he is after and has resources and experience to design very good strategies
how to achieve it. If the defender uses the developed method, it also approximates the rational
behavior. Hence, this assumption is reasonable.

Both players know the full plan library of the attacker This assumption usually does not
fully hold in real world computer networks, but we expect that it does not prevent the proposed
system from performing well. Large portion of the attack tree is certainly known to both players.
This project targets highly sophisticated attackers that can be assumed to have extensive knowledge
of their options. Moreover, the actions that model the behavior of the attacker in our system are
quite abstract and high amount of specific attack plans can be mapped to one of the plans in the
attack tree. Hence, if this assumption does not hold, we expect that the either the attacker or
the defender knows about a few attack plans that are not known to the opponent. If the defender
computes with a plan that is not known to the attacker, it can be slightly over-cautious. The
defender can be able to gain a slightly more as in the case that the defender does not use the plan
in its computation. On the other hand, it still guarantees the computed worst case quality of its
performance. The situation is worse if the attacker knows about an attack plan not considered
by the defender in its computation. In that case, the guarantees provided for the defender do not
hold anymore. However, it is very likely that the executed plan will be similar to some of the
considered plans and the quality of the classification will be reasonably good. Also, this situation
corresponds to the zero-day attacks. The original non-strategic CAMNEP system is designed to
perform well on these kinds of attacks. We expect the original and the strategic systems to run
one next to each other. Even if the novel plan avoids the game theoretic detection system, it can
still be detected by the other one.

The available classifiers and their quality are known to both players This assumption
trivially holds for the defender, as the defender knows the classifier it uses and it can estimate
their quality using challenges. This assumption is reasonable also for the attacker. CAMNEP, as
most of the intrusion detection systems, can be obtained and reverse-engineered by the attacker.
Most of the principles behind the intrusion detection systems have been published and as such are
available to the attacker. In order to get a good idea about the current quality of the classifiers, the
attacker just needs to model the characteristics of the network traffic in the target network. This
can be done exactly if some part of the network has been already compromised, or approximated
with sufficient knowledge about the structure of the network. Again, these assumptions represent
the worst case in some aspect.

73

Distribution A:  Approved for public release; distribution is unlimited.



January 16, 2012 Final Report

The defender can use only one classifier at a time This assumption does not restrict
the applicability of the model too much. As in the case on CAMNEP, even if the IDS can use
multiple classifiers, their reports are somehow aggregated at the end. After the aggregation, the
classifiers already behave as a single classifier, which consumes all the defender’s resources. Having
more insight into the internal structure of the classifier and recommending combinations of sub-
classifiers could improve the performance of the system in the future, but we chose not to do that
in this project.

The quality of the classifiers does not change during the game This assumption clearly
does not work in CAMNEP and we discuss it in Section 3.7.3.

Simplifying Assumptions

We continue with the assumptions we adopted to simplify the problem. These assumptions must
be removed in order successfully apply the developed system in a generic real world computer
network.

Single attacker who executes single plan In a real world computer network, multiple at-
tackers will attack the network simultaneously and the attacks and the information gained in their
progress can be shared and coordinated among the attackers. To model such highly complex con-
cept of the attacks, a more sophisticated algorithm will need to be employed. For example, in
the case that we can assign the actions to individual attackers, we can run multiple copies of the
algorithm, each of which will play against one of the attackers and aggregate the results (e.g., play
against the most dangerous attack). The applicability of this or similar approaches will have to be
addressed in future research.

All actions of the attacker have equal length In reality, some actions of the attacker, such
as connecting to an infected host, take much shorter time than the other (e.g., horizontal ping
scan). As a result, more actions of the attacker can be executed in single stage of the game or an
action can take several stages. We believe that in case the underlying IDS can provide a sequence of
observations for single stage of the game, the proposed approach can be adjusted to work without
this assumption. However, allowing a sequence of observations in one stage would most likely mean
further increase in computational complexity of the approach. I.e., more time would be needed to
compute good solutions, or worse solution would be achieved in the limited time.

Noop actions not used From the perspective model expressiveness, this assumption could be
removed immediately. Noop can be modeled simply as any other action. From the computational
complexity perspective, removing it strongly simplifies the problem. The main reason is that the
attacker could insert arbitrary number of noop actions into its plan, making the space of the
possible plans much larger. This issue could be partially tackled by using discounted utility to
limit the length of the attacker’s plans, but it will most likely require a more sophisticated solution
to make to approach applicable it real world domains.

74

Distribution A:  Approved for public release; distribution is unlimited.



January 16, 2012 Final Report

3.7.3 Changing Confusion Matrices

The general algorithm in for solving APRG described above assumes that the quality of the clas-
sifiers represented by the confusion matrices does not change during the game. This is not true in
CAMNEP. The quality of different operators used by CAMNEP strongly depends on the current
and the recent state of the network. The classifiers are continuously adapting and their quality for
each stage is estimated using the challenges as described in Section 2.4.

If we had a model describing how the confusion matrices change over time, we could modify the
algorithm to use some prediction of the confusion matrices in future stages of the game. However,
the network traffic is very unpredictable and any model estimating the quality of classification in
advance would be highly imprecise. The most exact estimation of the future classifier’s quality
seems to be their current confusion matrix.

Without the ability to predict the quality of the classifiers, we use the same confusion matrices in all
stages in the initial computation. As it is the best estimate of the future development and none of
the players can do much better, we can expect rational strategies to be produced by the algorithm.
However, if the confusion matrices change substantially between the stages, the soundness of the
progression in the game tree is weakened. The players already know the new state of the network
and all the iterations performed in the previous stages can cause irrational bias in the strategies.
On the other hand, if the optimal strategy did not change a lot, the iterations form the previous
stage can still guide the search. With some king of aging of the iterations, it can be a useful
heuristic to improve performance of the algorithm. Nevertheless, we chose the simplest solution
for our proof of concept implementation.

At the beginning of the new stage, we always drop the whole tree of the defender and we start next
iterations only with the root node. The new iterations are performed with the updated confusion
matrices. In the attacker’s tree, we keep also the parts of the trees computed in the previous stages,
because we assume that, especially in the later stages of the game, the base utility of the plans is
very important. Hence, the optimal strategy of the attacker is less likely to change substantially.

3.7.4 Confusion Matrix Filtering

Each defender action has a confusion matrix associated with it. Confusion matrix gives a prob-
ability distribution over possibly observable actions given the actual attacker action taking place
in the network. There are 22 defender actions altogether. This would introduce a high branching
level to the game tree and require a much larger amount of samples of the node to calculate a
good estimate of the quality of each of the actions. After direct inspection of the matrices, we
have found out, that many of them provide a very similar, even near identical distributions for all
of the attacker actions. As a result, we have decided to perform pruning of the defender actions
based on the similarity of their respective confusion matrices.

There are multiple methods of performing this task. A basic method would be a comparison of two
confusion matrices using each of the probabilities for each of the attackers and testing, whether the
difference between the probability from the first matrix and the second matrix differ only by a small,
given epsilon value. If the difference is greater, than the epsilon value for any of the probability
pairs, then the whole matrices are considered to be different. One of the more established methods
of probability distribution comparison is the Kullback-Leibler divergence.Kullback-Leibler (KL)
divergence (also termed information divergence or information gain) is a standard measure used
in probability theory to compute the similarity of two probability distributions. For two discrete
probability distributions P and Q over the same random variable (the same feature space in our
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Input: CMs = (M1 . . .Mn) – sequence of confusion matrices; ε - threshold
Output: (M1 . . .Mm) – a reduced sequence of confusion matrices

1: for M1 ∈ CMs do
2: for M2 ∈ Out do
3: similar = true
4: for each attacker’s action a do
5: if Dkl(M1[a]‖M2[a]) > ε or Dkl(M2[a]‖M1[a]) > ε then
6: similar = false
7: break
8: end if
9: end for

10: if similar=true then
11: Out = Out+M1

12: end if
13: end for
14: end for
15: return Out

Figure 3.9: The algorithm for reducing the number of actions used by the defender.

case), the KL divergence of Q from P is defined as

Dkl(P‖Q) =
∑

x

P (x)log2
P (x)

Q(x)
(3.8)

where x in the sum iterates over the range of the random variable. KL divergence in this form is
not a metric per se, because it is not symmetric, i.e., Dkl(P‖Q) 6= Dkl(Q‖P ) in most cases. That
is why the symmetrized form of Kullback-Leibler divergence is often used

Dskl = Dkl(P‖Q) +Dkl(Q‖P ) (3.9)

We use a similar metric. If both Dkl(P‖Q) and Dkl(Q‖P ) are lower than a specified threshold,
we consider the two distributions to be identical. Simple KL divergence is still not enough, be-
cause we are comparing a set of probability distributions, not just two distributions. We consider
two sets of probability distributions identical, if the KL divergence value of each of the probabil-
ity distributions, is smaller than the selected epsilon (1.2997615 – a hand-picked value) in both
directions.

The algorithm for reducing the number of defender’s actions is presented in Figure 3.9. It iterates
over all the confusion matrices and tests each column of the confusion matrix for similarity based
on the KL divergence. If a new matrix is similar to any of the previously analyzed matrices, it is
discarded. If not, it is added to the output sequence.

The number of selected actions may vary from 1 to 22, and 1 has been observed to happen on a
number of occasions. The game theoretic method is meaningful even with a single action of the
defender, because the attacker’s tree has to be modified according to the observation and explored
with respect to this modification.
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3.8 Experimental Evaluation

The experimental evaluation consists of three independent experiments. First, we evaluate the
selection function used in concurrent MCTS on small matric games, then we use an entirely syn-
thetic, small setup, removed from the network security domain, which can be easily analyzed by
hand. At the end, we analyze a setup inside the network security domain.

3.8.1 Bandit Methods Evaluation

In order to evaluate the benefits of using EXP3 and assess the speed of its convergence in MCTS,
we performed a set of experiments on the repeated unknown games setting. We focus only on the
zero-sum games, because we have formulated the APRG as a zero-sum game.

We present the main evaluation in Figure 3.10. It compares the speed of convergence for different
setting of the exploration parameter γ in five different zero-sum games. Both players were using
the same variant of EXP3 and the exploitability of the strategy of the row player is presented.

The experiments show that with a very small exploration parameter, EXP3 converges slowly. On
the other hand, larger exploration causes the algorithm to converge to a more uniform distribution,
which is exploitable, especially in case a pure Nash equilibrium exists (see Figure 3.10h). Otherwise,
the convergence is quite robust to the choice of the parameter. In the long run, the theoretically
sound EXP3 performs best. We have evaluated also an alternative dynamic setting of the parameter
and denote it autoNaN in the results. The parameter was decreased smoothly according to the
following function.

γ = 0.2 ∗ 1

2t/1000
(3.10)

Using this parameter setting, EXP3 tend to converge faster at the beginning, but the difference is
not very large and it behaves worse with higher number of iterations. Based on these results, we
further use the presented variant of EXP3.1 for setting the parameter.

The worst results for all settings of γ are achieved for the game in Figure 3.10d. EXP3 algorithm
gets deceived by several high rewards on the second action while both players have more or less
uniform strategies. Then, it requires over a million iterations to converge to a strategy with regret
lower than 0.5. Eventually, even for this game EXP3.1 converges to low regret.

The following experiment compares the most successful EXP3.1 algorithm to the popular UCB1.
UCB1 assumes that the samples of payoffs of individual actions origin from an unknown proba-
bility distribution. This is not true in simultaneous-moves games. As a results, UCB1 does not
necessarily converge to NE in the repeated play of an unknown game [50]. One of the main reasons
if synchronization of the deterministic exploration, which causes the rewards of the player to be
strongly dependent on each other actions. The situation is even worse if the exploration parameters
are identical. In this experiment, we use the parameter C = 2 for the row player and C = 3 for the
column player. Despite of the suboptimal behavior, UCT has been successfully used games with
simultaneous moves in the general game playing competition[22], hence, we evaluate it as well.
The results are presented in Figure 3.11.

We can see that UCB1 performs reasonably well if only a small number of iterations is allowed.
With more iterations, it gets worse for some settings. UCB1 seems to be working well when
the optimal distribution is close to a pure strategy or a uniform strategy on some limited support.
Generally, the experiments show that UCB1 may be a usable option for our MCTS implementation,
but the theoretical guarantees for EXP3.1 result to a more stable performance.
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Figure 3.10: Dependence of the exploitability of the strategy given by relative frequency of use of
actions in the EXP3 algorithm on the number of iterations. One row of the figures is always the
game and its Nash equilibrium strategy for the row player, then follows the exploitability if the
computed strategy over 10000 iterations and a detail to the first 300 iterations in the same graph.
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Figure 3.11: Comparison of exploitability of EXP3.1 and UCB1. The results (a)-(e) correspond to
the matrix games in Figure 3.10 in the same order. The figures show the dependence of exploitabil-
ity of the strategy given by the relative frequencies of using individual actions on the number of
iterations.

Figure 3.12: The attack tree for the simple synthetic experiments. The numbers in the leafs denote
the utility for the attacker in case it has not been observed at all.

3.8.2 Synthetic experiments with APRG

There are two synthetic examples. Each of them provides the defender with two actions and the
attacker with three actions. The attacker’s actions are identical for both cases and based on their
preconditions and effects, they create the attack tree depicted in Figure 3.12. The defender’s
domain in the first case is different from the one in the second case. The Nash equilibrium can be
easily found in both synthetic cases. In the first case, we have a single pure Nash equilibrium, the
second case contains a single mixed Nash equilibrium. Because of the small size of the domain, we
have chosen to limit the evaluation time to 20 seconds for each of the two stages, i.e., 40 seconds
in total. Almost one million iterations of the concurrent MCTS has been performed in each stage.

Case 1

The confusion matrices for the first case are presented in Figure 3.13. The first classifier (d1) can
perfectly detect action A and B, but never detects action C correctly. If the attacker executes C,
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d1
NOOP A B C

NOOP 1 0 0 1/3
A 0 1 0 1/3
B 0 0 1 1/3
C 0 0 0 0

d2
NOOP A B C

NOOP 1 1/3 1/3 0
A 0 0 1/3 0
B 0 1/3 0 0
C 0 1/3 1/3 1

Figure 3.13: Confusion Matrix for actions d1 and d2 in the first synthetic case

Figure 3.14: The empirical frequencies of using individual actions in the tree. Some of the values
are omitted for clarity.

it can be detected as any other action with equal probability, but newer as C. Similarly, classifier
d2 can flawlessly detect action C and never actions A and B. It is easy to see that in this case,
the defender should always use d1 in the first stage of the game. Regardless of what happens in
the first stage, the attacker will prefers to play C in the second stage. Hence, the defender prefers
playing d2 in the second stage. It means that the pure Nash equilibrium for the first synthetic case
is [(A,C); (d1, d2)] and the value of the game is 2/3.

The results of running concurrent MCTS with EXP3.1 in the first synthetic case are presented in
Figure 3.14. The numbers at the edges are the number of iterations in which the individual edge
has been selected. We can see that as in the case of the repeated matrix games, the empirical
frequencies of using individual actions our algorithm also converges to the single Nash equilibrium.
In both roots of the trees, the action which is not in NE has less than 0.2% of iterations. If we
look at the second defender’s decision after the most probable observation, the right action is also
selected in more than 99.8% iterations.

Case 2

The second case evaluates the behavior of the algorithm in a game without any pure NE. The
confusion matrices for the first case are presented in Figure 3.15. The first classifier (d1) can
perfectly detect only action A and never detects the other two actions correctly. Classifier d2
detects only action B.

d1
NOOP A B C

NOOP 1 0 1/3 1/3
A 0 1 1/3 1/3
B 0 0 0 1/3
C 0 0 1/3 0

d2
NOOP A B C

NOOP 1 1/3 0 1/3
A 0 0 0 1/3
B 0 1/3 1 1/3
C 0 1/3 0 0

Figure 3.15: Confusion Matrix for actions d1 and d2 in the second synthetic case.
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A B NE(probability)
d1 3/2 2 0.8
d2 3 1 0.2

NE 0.4 0.6

Figure 3.16: Matrix game equivalent the first stage of the second synthetic case under the assump-
tion that the attacker acts rationally in the second stage.

Figure 3.17: The empirical frequencies of using individual actions in the tree. Some of the values
are omitted for clarity.

Regardless of what happens in the first stage, the attacker prefers to execute action C in the second
stage, because it knows that the defender has no classifier that could detect this action and the
action leads to the higher base utility. The important part of the game is player in the first stage.
The game can actually be transformed to the matrix game in Figure 3.16. For example, if the
attacker selects plan (A,C) and the defender selects the action d1, it will observe the action A and
hence the utility will be 3/2. If the defender chooses the wrong classifier d2, it will not observe any
of the actions in the attack plan and the utility of the action is 2. This matrix game does not have
a pure NE and the only mixed NE is the one depicted in the figure. The attacker should choose B
with probability 0.6 and the defender should choose d1 with probability 0.8.

The results of running the proposed algorithm are presented in Figure 3.17. The solution of our
algorithm suggests that the attacker should use action B with probability 0.596 and that the
defender should play action d1 with probability 0.798. This result is very close to the actual NE
of the game.

Even though we did not manage to formally proof that the proposed algorithm always converges
to NE, our synthetic experiments indicate that it may be the case.

Comparison to baselines

In the last experiment with the synthetic domain, we measured how the complete system including
the progression in the tree responds to the tree plans of length 2 of the attacker. We run the
computation for 20s per stage and for each plan, the whole system run 29 times. We present
the mean of all these runs. The results are presented in Figure 3.18. Note that the plot depicts
the attacker’s utility and the defender’s loss. Hence, the lower values are better for the attacker.
We use the same baselines also for the experiment with real network data, so we explain them
here in more details. The first value we measure is the best response (BR). It corresponds to
selecting the best possible classifier in each stage of the game in case the defender knows the plan
of the attacker in advance. This value is generally not achievable by a real system, which does
not know the plan of the attacker in advance, but it creates a good lower bound on achievable
performance. A similar value is the worst response (WR). It is the utility achievable in case of
knowing the attacker plan in advance and intentionally selecting the classifier with smallest chance
to discover the next attacker’s action. In the case of our synthetic domain, the defender can always
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Figure 3.18: Comparison of the results of the proposed technique in comparison to baseline algo-
rithms. C1/C2 means Case 1 and Case 2 of the synthetic experiment. BR is the value of selecting
the best response classifier, Random is the value of selecting random classifier, BaseUtility is the
value of the attacker’s plan without any observation and GT is the value obtained by our method.

find a classifier that will certainly not see the next action; hence the value of the worst response
is always the same as the attacker’s base utility. The random classification just chooses any of
the classifiers with uniform probability distribution. We refer to the results of the proposed game
theoretic method as GT.

In the first case, the proposed game theoretic system perform better than the random classifier
selection regardless of which plan has been used by the attacker. In case of the rational attacker’s
plan (A,C), our system has identified and used the best response classifiers. The same is true
also for plan (B,C). The best response classifiers for action A is the same as for action B. Even
though our system assumes the opponent playing B very improbable, because of ideal confusion
matrix, it believes the opponent has played B after the observation and selects d2. This completes
the best response. Only in case of the attacker playing (B,A), our system does not choose the
(ex post) optimal strategy. It is because playing (already irrational) action B, the rational player
would choose C. It is expected by the system and the classifier suitable for this action is played
by the defender. However, the attacker plays A and the defender could be better off is he chose
the other classifier. On the other hand, it should not know it in advance. Moreover, the utility
obtained by the attacker this way is still lower than the utility, it would have guaranteed if it has
chosen the other action, as we can see in the bars of plan (B,C).

In the second case, the rational attacker can play any of the plans (A,C) and (B,C). The later
should be more probable. Only for the first plan, our approach reaches higher utility then the
random selection of the classifier. There is a good reason for that. Note that the utility achieved
for plans (A,C) and (B,C) are very similar. In fact, the difference is caused only by a small
number of samples in the experiment. The defender does not know in advance if the attacker plays
A or B, hence it is worth playing worse than random in case of (B,C) in order to prevent higher
loss in case (A,C). The last attacker’s plan – (B,A) is clearly irrational. The attacker gains much
less then it would have guaranteed by other plans. Still, the game theoretic method plays close to
the random strategy.

This experiment shows that in case of facing the optimal plans by the adversary, our game theoretic
method provides good results. Moreover, if the opponent does not act rationally, it still can have
reasonably good performance.
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3.8.3 Full scale experiments with APRG in CAMNEP

The best evaluation of the proposed system would be to run CAMNEP with the game theoretic
module on a labeled real world computer traffic that contains several samples of rational attack
plans, which satisfy our assumptions. However, we have only one labeled data sample, which
contains such a plan. We refer to the experiments on this sample as the experiments with the real
plan. In order to make the experiments more representative, we needed more sample plans. That
is why we used the real network traffic and injected artificial attacks generated by the challenge
agents into the traffic (see Section 2.1).

Further, instead of running the whole CAMNEP with all the data many times to achieve statistical
significance of the results, we have de-coupled the evaluation. The combined evaluation would take
prohibitively long time. We first run CAMNEP on the data for several different random seeds. The
random seeds influence mainly the challenge insertion process; hence they lead to different learning
of the basic CAMNEP classification agents, which influences the quality of classification. For each
seed, we logged the confusion matrices of all operators (i.e., classifiers) available in CAMNEP in
each stage of the game. Using the confusion matrices as the input data, we run the evaluation of
the game theoretic method separately.

We have evaluated our algorithm’s performance by performing multiple repetitions over 10 rational
attacker plans (see Figure 3.19) with an emphasis on the real plan, which reflects one of the most
frequent attack plans. The real plan has been evaluated 32 times for each of its 3 seeds, while the
other plans were evaluated only 20 times for each of their respective seeds. Seed refers to value
that has been used to calculate confusion matrices and reflects the network traffic. Each of the
seeds is specified by a sequence of confusion matrices for each of the defender’s actions for each of
the stages (of the attacker’s plan).

The network domain evaluation data was created by artificially inserting the attacks in the real
network traffic data. The source of the data for the real attack plan is the real network traffic, in
which we have conducted this attack.

The provided traffic data spans a length of stages, during which the attacker’s actions take place.
In order to further simplify the already difficult task for the game theoretic model, we have selected
only the stages during, which the actions of the attack occur. So there are no NOOP actions and
actions do not span multiple stages. Only the appropriate confusion matrices are then taken into
account in the evaluation.

For the algorithm pseudocode, which the evaluation follows see the Algorithm 3.20. The execution
is simple. For each of the stages of the attacker’s plan, the next action is requested from the
defender. Using this action and the attacker’s action from the given stage, the observation is
generated from the probability distribution P (oi|aj , dk), which is specified by the appropriate
confusion matrix. Then the game advances to the next stage by providing the observation, along
with the next set of confusion matrices, to the defender and requesting the next action to take.
The algorithm ends when the whole attacker’s plan has been processed and all observations have
been generated.

We are going to assess the quality of our game theoretic approach by taking averages at multiple
levels. Here, we are going to provide the average utility achieved for each of the attacker’s plans
and an average utility over all plans. We are going to base this data on repeated runs of the
approach for the same attack plan with the same traffic profile. We have also calculated the
quality of the best response (BR), worst response (WR), the random response (Random) and each
of the possible defender’s action’s (Actions), if used in each of the stages of the attack. The BR
and WR was calculated with a prior knowledge of the attacker’s plan by deliberately selecting
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HORIZONTAL SCAN FOR SPECIFIC SERVICE, BRUTEFORCE, CONNECT TO HOST //real

DNS REQUESTS, HORIZONTAL PING SCAN, PORT SCAN, FINGERPRINTING, WEB ATTACKS,

CONNECT TO C2 //malware web

DNS REQUESTS, HORIZONTAL SCAN FOR SPECIFIC SERVICE, HORIZONTAL PING SCAN,

SEND SPAM, PORT SCAN, DDOS TO SPECIFIC SERVICE //ddos

HORIZONTAL PING SCAN, HORIZONTAL SCAN FOR SPECIFIC SERVICE, BRUTEFORCE,

FINGERPRINTING, CONNECT TO C2, DDOS TO HOST //malware ddos

HORIZONTAL PING SCAN, HORIZONTAL SCAN FOR SPECIFIC SERVICE, PORT SCAN,

DDOS TO HOST, DNS REQUESTS, DDOS TO SPECIFIC SERVICE, BRUTEFORCE

//ddos and bruteforce

HORIZONTAL PING SCAN, PORT SCAN, HORIZONTAL SCAN FOR SPECIFIC SERVICE, BRUTEFORCE,

CONNECT TO HOST, DDOS TO SPECIFIC SERVICE //bruteforce and malware ddos

HORIZONTAL PING SCAN, PORT SCAN, WEB ATTACKS, DDOS TO HOST, CONNECT TO C2

//web attacks and ddos

HORIZONTAL SCAN FOR SPECIFIC SERVICE, FINGERPRINTING, BRUTEFORCE, DNS REQUESTS,

CONNECT TO HOST, SEND SPAM //bruteforce and send spam

HORIZONTAL SCAN FOR SPECIFIC SERVICE, HORIZONTAL PING SCAN,

DDOS TO SPECIFIC SERVICE, WEB ATTACKS, DNS REQUESTS //ddos and web attacks

HORIZONTAL SCAN FOR SPECIFIC SERVICE, HORIZONTAL PING SCAN, WEB ATTACKS,

DDOS TO SPECIFIC SERVICE, FINGERPRINTING, SEND SPAM //web attacks and send spam

Figure 3.19: Attack plans for evaluation in the network domain

1: The action for the apriori step is requested from the defender, based solely on the confusion
matrices

2: Ask the model for an action to take
3: Generate an observation (and record it) according to the P (oi|aj , dk) distribution, where aj is

the actual attacker’s action and dk is the defender’s action selected by the model
4: for each stage do
5: Feed the observation to the model
6: Ask the model for an action to take
7: Generate an observation (and record it) according to the P (oi|aj , dk) distribution, where aj

is the actual attacker’s action and dk is the defender’s action selected by the model
8: end for
9: Evaluate the observed plan against the attacker’s plan

Figure 3.20: Evaluation pseudocode
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the defender action with the greatest probability of observing the actual attacker action or the
smallest probability respectively. As BR, WR, Rnd and plans made exclusively from one of each
of the defender’s actions are independent of the observations we could easily calculate a good
approximation of the estimated plan quality by averaging over a much greater number of trials.

Our way of calculating BR, WR, Rnd and Actions may not seem necessary as one could say that
the expected value of the utility function can be calculated by taking the expected number of
observations in all cases and then calculating the utility for that might be sufficient. However this
is not possible. The reason for that is formulated in the Jensen’s inequality (see [28]). Jensen’s
inequality states that this value would be only a lower bound of the actual expected value of the
utility function. As a result we had to approximate the mean value using an average over as many
iterations as possible. The BR, WR and Actions were averaged over 106 iterations. The Rnd
evaluation has been performed by averaging over 1000 random plans with 10000 random samples
for each of them.

This could not be done with the plan generated by the game theoretic approach, because different
observations would affect, which defender’s actions is going to be chosen next, therefore the result-
ing utility would be misleading. As a result, the estimations of the WR, BR and random selection
are much more accurate, than that of the data collected during the experiment.

In order to compare the performance against some established method, we have given this task to
CAMNEP as well. We have generated a single plan for each of the seeds, then we have evaluated
its performance against the attacker plan and then evaluated its performance against the attacker’s
plan with the given seed the same way as we evaluated BR and WR. We realize that this is not
a correct approach for the same reason as it is not correct for the game theoretic evaluation, but
CAMNEP itself does not optimize the same utility as our game theoretic approach, and serves
only as a point of reference. CAMNEP optimizes to minimize the rate of false positives and also
works over all confusion matrices for the full duration of the attack. It does not work only with
the meaningful matrices that contain the attacker’s actions and does consider the possibility that
the attacker’s action might span over multiple stages as well and therefore is at a disadvantage.

Results

In this section we are going to summarize our results. The main parts of this section are eval-
uations of the average performance of our game theoretic approach (GT), best response (BR),
worst response (WR), random response (Rnd) and each of the possible defender’s action’s (Ac-
tions), if used constantly over the whole game. We have also included the Base utility, which is
the sum of predicate values in the attack plan without any penalty for defender’s observations.
The results can be found in Figures 3.25, 3.21, 3.22. We have picked the real plan and the brute-
force with malware ddos as good examples of the behaviour. The plotted results may be found in
Figures 3.23 and 3.24. The results clearly show the game-theoretic defender as a good solution
finder, as it usually fares much better than Rnd.

As we can see in Figure 3.25, the results seem a little odd sometime. It appears that our method
sometimes beats the BR (e.g., plan bruteforce and send spam, seed 3) and also loses to the WR on
occasion as well (e.g., plan ddos and web attacks, seed 1). This cannot be so in the long run. In the
previous Section 3.8.3, we have already given the reason for this phenomenon. It is simply because
of a small sample, caused by high computational time requirements of the evaluation. Much larger
sample is a valid point for the future development. Still, our method performs much better on
average than random and it is only slightly worse than the BR. This can be seen in Figure 3.21.
In the aggregated results, the GT approach is only 2.5 utility points worse than the best response.
By calculating the confidence intervals for the mean values with α = 0.05, we have found, that
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Plan BU GT BR Rnd WR CP

bruteforce and malware ddos 95.00 45.13 40.58 48.16 57.44 50.53
bruteforce and send spam 109.00 45.99 40.11 45.51 54.58 45.03

ddos 98.00 37.13 34.60 39.83 44.03 41.01
ddos and bruteforce 85.00 33.81 26.52 31.03 37.38 29.26
ddos and web attacks 68.00 28.35 26.38 28.52 30.30 27.90

malware ddos 95.00 39.19 42.64 48.01 54.96 48.19
malware web 83.00 31.26 30.46 32.74 34.88 33.11

real 73.00 48.79 47.35 55.76 68.46 55.60
web attacks and ddos 84.00 41.88 37.54 45.44 52.94 51.18

web attacks and send spam 98.00 35.28 35.54 39.79 43.88 38.09

Aggregated 88.80 38.68 36.17 41.48 47.88 41.99

(a) Table
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Figure 3.21: Results (CP refers to CAMNEP, BU to Base utility)

these are still considerably large intervals (see Figure 3.22) for all the cases and therefore these
values should not be taken as precise estimates.

However, the situation is slightly better when aggregated over all plans, seeds and repetitions. The
upper bound of the confidence interval is lower, than the estimated mean of Rnd. Because our
estimation of the mean of Rnd quite precise (size of this confidence interval is negligible 0.0108),
our method is significantly better given the selected α.

Confusion Matrix Filtering

In order to reduce the computational requirements of our solution, we remove the classifiers with
confusion matrices very similar to some other classifiers (see Section 3.7.4). In this section, we
evaluate how many of the classifiers are preserved after this filtering in the real word data used in
our experiment. The histogram in Figure 3.26 shows the numbers of instances in which a particular
number of actions was preserved. From the graph, we can see that we cannot infer some simple
probabilistic distribution for the number of actions as they vary greatly. Very often, only one or
two actions were left for the defender. This happened in over 1500 test instances. It may seem that
evaluation during a stage, in which the defender has only one action, is meaningless, but we have
to remember that attacker’s tree gets updated as well. On the other hand, almost any numbers of
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Plan Mean StdDev LB UB

bruteforce and malware ddos 45.13 21.44 39.70 50.55
bruteforce and send spam 45.99 23.60 40.02 51.96

ddos 37.13 12.99 33.85 40.42
ddos and bruteforce 33.81 18.11 29.23 38.39
ddos and web attacks 28.35 13.93 24.83 31.88

malware ddos 39.19 17.40 34.79 43.59
malware web 31.26 16.14 27.18 35.35

real 48.79 18.72 45.05 52.54
web attacks and ddos 41.88 19.31 37.00 46.77

web attacks and send spam 35.28 13.38 31.90 38.67

Aggregated 39.25 18.94 37.78 40.73

Figure 3.22: Confidence intervals (LB and UB refer to lower bound and upper bound respectively)
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Figure 3.23: Real plan results
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Figure 3.24: Bruteforce and malware ddos plan results

actions is preserved in some of the experiments. In 80 cases, all 22 actions were preserved.

Computational Resources

We have run the experiment on a single multi-core machine. It has an 8-core 2.4GHz Intel Xeon
processor and 24GB of RAM. Four instances of the experiment ran concurrently. Each with its
own dedicated core with a 100% load. The solution is single-threaded and therefore in would not
really benefit from multiple cores too much. We have never crossed 4.5GB threshold for a single
instance of the memory footprint during the experiment. The usual size of allocated memory space
was 3.5GB.

The number of iterations (samples) of the concurrent MCTS algorithm performed in a single stage
hugely varied with the number of defender’s actions that have survived the filtering described in
Section 3.7.4. However, the aggregated number of iterations performed per stage can bee seen
in Figure 3.27. It presents a histogram of the number of instances (regardless of plan, seed or
repetition) on the y-axis and the number of iterations accomplished in the fixed time period on the
x-axis. The graph shows that the distribution of the iteration counts is roughly binomial/Poisson
and most of the time there is roughly between ten and twenty million iterations. In most instances,
the more then 107 iterations were performed, however, in some cases even 108 can be made in time.

3.8.4 Summary

We have evaluated our approach to the problem through two distinct setups – a purely synthetic
and a real-world-network-based domain.

We have presented an evaluation of a synthetic setup first. It featured two games sharing the same
action domain for both players and plan space for the attacker. However, they differed in their
confusion matrices. The first game featured a mixed Nash equilibrium (NE), while the second
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Figure 3.25: Complete results
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Figure 3.26: Histogram of action counts aggregated over every stage, plan, seed and repetition
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Figure 3.27: Histogram of iteration counts aggregated over every stage, plan, seed and repetition
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featured a pure NE. We have seen that the calculated solutions are nearly the actual NE in both
cases. This supports the hypothesis that the proposed algorithm converges to the optimal solution.

The real-network-based domain was the second setup. We have run a series of evaluations of our
approach against various other solutions. We have seen, that the random response solution fared
significantly worse, since our solution had the upper bound of its confidence interval with α = 0.05
lower than the than the Rnd solution. CAMNEP, which optimizes a different criterion, performed
even worse with respect to the utility used in this evaluation.

Based on the results, we conclude that the proof of concept implementation of the proposed method
was successful and the next steps of this research should be relaxing the assumptions analyzed in
Section 3.7.2.
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Chapter 4

Conclusions and Future Work

The aim of the presented project was to investigate the potential of game-theoretical modeling of
the attacker-defender interaction in the intrusion detection game. The key difference with respect
to the past work in the domain is the integration of the game-theoretical methods with an actual,
industry-strength anomaly detection system and operating this combination on live traffic data.

Given the results presented in Section 3.8 and elsewhere in the paper, we can conclude that the
simplified model presented in Section 3.2 and the extensive game model used in the core of this
work (defined in Section 3.3 and solved throughout the rest of the Chapter 3) can be integrated
with live IDS under reasonable, but very restrictive assumptions.

In practice, we conclude that this area of research has a very high potential to produce relevant,
deployable results within next 5 years, based on the trend in the computational power of cur-
rent processors, average memory required for the computation and the growing sophistication of
methods for efficient solving of realistic IDS games.

The critical assumptions that need to be addressed are related to the following problems:

– Time representation and time-related assumptions in the game theoretical model.

– Handling of several concurrent attackers.

– Identification of attacker coalitions, where the actions from several attackers aim to achieve
a common goal.

– Sufficient detection precision and more thorough, two-way integration between the IDS and
the game-theoretical model.

We argue that further, carefully designed applied research in this area should concentrate on
progressive reduction of assumptions that are currently necessary to make the game theoretical
model computationally solvable. The advances in game theory and gameplaying will need to be
reflected in the security games domain. Further IDS and network security research is necessary to
address the assumptions from the other side: by identifying the coalitions of attackers and treating
them as a single individual (through the analysis of peer-to-peer networks), through more precise
classification of events and through advances in the detection sensitivity and precision.

In the same time, the attackers are improving the attack techniques on their side as well, therefore
ensuring that the security of future critical networks will remain an ongoing struggle.
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Appendix A

Towards Undetected Attacks

A.1 Introduction

The network intrusion detection systems (NIDS) are becoming a standard part of the security
measures protecting enterprise computer networks against attacks from the outside. NIDS are
usually deployed on the perimeter of the protected network (core routers), such that the ordinary
users within the protected network are not aware of their existence. The role of NIDS is not
limited only to detection of attacks from the outside, but they are used to detect malicious traffic
generated within the protected network in order to identify hosts infected by malware [25], to detect
information ex-filtration [8], and other types of unwanted traffic (p2p networks, skype, etc.).

Most frequently deployed NIDS, such as SNORT [52] or BRO [10], rely on the signature matching
mechanism, where payload of packets are inspected and matched against signatures of known
malware and other threats. While the signature based NIDS have low false positive rates, they
posses many undesirable properties, some of them being the need of keeping database of signatures
up to date, which implies the inability to detect zero day attacks (attacks which signature is not in
the database), and inability to detect attacks, when the payload is encrypted. To alleviate these
burdens, a lot of research efforts is devoted to intrusion detection systems based on the anomaly
detection paradigm.

Anomaly detection based NIDS [18] does not use any database of signatures. Instead, it inspects
the traffic on the network and identifies statistical outliers — parts of the traffic which do not
conform to modeled trends or deviate from the majority. The anomalous traffic is reported with
the hope that most of it is malicious or unwanted. The anomaly based NIDS relies on assumptions
that (a) most of the observed traffic is benign and (b) malicious traffic will in some way deviate
from the benign majority.

Although the advantages of anomaly detection based NIDS are appealing, they are not widely used
in practice, since they usually suffer from higher false positive rate compared to the signature based
approaches and there are concerns about their security. The knowledgeable attack can modify its
attack in such a way that the intrusion detection system does not raise any alarm. Moreover, as
the NIDS learns the model from the observed traffic, the attacker with sufficiently large resources
(obtained for example by hiring botnet network) can attack the learning algorithm itself and force
it to learn to recognize malicious traffic as the legitimate one [6, 48].

In this work, we practically investigate the security of NIDS based on anomaly detection paradigm
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against knowledgeable attacker. The goal is to perform undetected attack against the network
monitored, under worst-case scenario for the defender (NIDS), which has full access to all internal
states of the system. Although this scenario of fully-knowledgeable adversary is unlikely to happen
in practice, 1 it is important for the evaluation of the security and limitations of the system.

The experiments are performed against CAMNEP intrusion detection system [16], which uses
ensemble of six diverse yet simple anomaly detectors [58, 20, 53, 32]. The results shows that while
it is possible to bypass individual CAMNEP’s detectors, bypassing all of them simultaneously
is either impossible, or the strength of the attack is decreased below an acceptable level. This
suggests that modification of the internal state of the IDS, as has been demonstrated in prior art
against one detector [48], might be very difficult, or even impossible, if NIDS uses ensemble of
diverse detectors simultaneously.

The rest of the chapter is organized as follows. Section A.2 summarizes the prior art and different
approaches towards realization of an undetected attack. Section A.3 details parts of CAMNEP
NIDS important for this chapter, namely the anomaly detectors. The very same section also
contains description of evasion strategies against them and discuss the implications. Section A.4
describes the experimental details with the algorithm generating the actual attacks. The experi-
ments are presented in Section A.5. Finally, the chapter is concluded in Section A.6.

A.2 Cloaking the attack

Ptacek et al. [39] has identified two, complementary strategies to evade the detection. While evasion
strategy decreases the intensity of the attack or modifies it, insertion strategy add supplemental
traffic to mask the actual traffic caused by the attack. Both strategies are general and can be
applied to any type of IDS system. Both of them are discussed in detail below in the chosen
application domain, which is network intrusion detection.

A.2.1 Evasion — lowering the intensity

The first attacker’s strategy is to lower the intensity of the attack and spread it over longer
period of time. The rationale behind is that by making the intensity of the attack very small,
it will be more difficult to separate it from the benign traffic. Moreover, as will be discussed in
Section A.3, some detectors inspect only sources with number of flows exceeding certain threshold.
These facts support the belief that this strategy might almost always work. Its drawback (from
the point of view of the attacker) is that the intensity of the attack can be so low that the possible
reward for the attacker would not be interesting anymore, and he will look for other target. An
example is brute-force cracking of SSH password, where having only couple trials per minute is
practically useless.

A.2.2 Insertion — generating additional flows

In the second strategy, the attacker generates additional traffic that is not directly related to
the attack. Its purpose is to conceal the actual attack, such that the overall statistics of attacker’s
traffic observed by the detection system look innocuous.

1Even though the attacker can monitor network at the same point as the system he is attacking, which enables
him to run his own CAMNEP to get the access to the internal state of the system, his knowledge would not be
complete. The internal state of CAMNEP is randomized through the challenge mechanism, which causes internal
states of systems fed with the same inputs deviates from each other.
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Barreno et al. [6] further proposes to use supplemental traffic to manipulate the internal state of
the detector, such that attacks will be considered as a benign traffic. He specifically challenges IDS
systems based on machine learning principles. The reward is that even attacks of high strength
can be invisible.

The idea has been experimentally verified by Rubinstein et al. [48], who has targeted the detector
of Lakhina et al. [32]. Similar in essence, but simpler approach has been investigated by Newsome
et al. [35], who proposed to shift the detection threshold toward accepting the malicious traffic
by adding false positives2. Both works [48] and [35] exploits the fact that targeted systems had
distinct training phase (during which the model of the traffic is inferred) and detection phase
(during which the system is actually used to detect the attacks). It makes the situation easier for
the attacker, since alarms during training phase, which are highly likely, are not investigated. In
the CAMNEP system challenged in this work, the observed traffic is simultanously scrutinized for
attacks and used for adaptation of the IDS to the current state of the network. This makes the
situation more difficult for the attacker, since he should not raise any alarm.

Although the insertion strategy is very interesting, because it possibly enables to perform large
scale attacks, there are several caveats to be aware of. First, the amount of the traffic that has
to be added to cover the attack might be so large that the attacker cannot generate it with his
limited resources. Second, the total volume of the traffic (attack flows + cover flows) can be so
large that it will be easily detectable by detectors monitoring volume of the traffic [32, 20]. Third,
the additional traffic might disturb some network statistics the attacker is not aware off 3, which
can make his activities easily detectable.

Here we point out that the problem of bypassing the detector is very similar to steganography,
where communicating parties try to hide the secret message into innocuous looking objects (e.g.
digital image). In the steganography domain it has been already many times experimentally verified
that making more embedding changes, which corresponds to the insertion strategy, increases the
probability of being detected. From these reasons, we consider the evasion strategy more important.
The attacker has higher probability of being successful with less resources. Consequently, this
strategy represents higher risk and it is the focus of this chapter. The insertion strategy is left to
the future work.

A.3 CAMNEP IDS

In this section, we describe those parts of CAMNEP NIDS that are most important for our work.
The input to the CAMNEP system are statistics of flows (number of bytes, number of packets,
duration, etc.) in the NETFLOW format [14] aggregated over five-minute long time windows. By
the flow it is understood a unique connection between two computers determined by the five-tuple
(sIP, sPrt, dIP, dPrt, protocol ID). CAMNEP uses ensemble of six different detectors [58, 20, 53, 32]
to decide, which flows are malicious and which are benign. The detectors are diverse, as some of
them are based on heuristic principles while others rely on machine learning algorithms in order to
adapt to the current traffic on the network. In order to make the text self-contained and explain
the modifications with respect to prior art, the detectors are described below together with the
evasion strategies to bypass them.

2His idea is to raise so many false alarms, that the network operator will turn off the system
3This is actually inconsistent with our assumptions, but yet worth to note
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A.3.1 Xu sIP and Xu dIP

Two heuristic based detectors Xu sIP and Xu dIP are inspired by the original work of Xu et
al. [58]. Xu sIP calculates relative uncertainty4 of source and destination ports, and destination
IP addresses of all flows originating from a given source IP address. If all three quantities are within
the range (0.20, 0.80), than all traffic originating from this IP address is deemed to be benign. The
Xu dIP variant is essentially the same, except the relative uncertainnesses are calculated with
respect to destination IP addresses.

Both detectors use fixed static rules that do not adapt to the background traffic. According to our
measurements (not presented here), they are good at detecting horizontal scans and brute force
cracking of SSH passwords.

In order to bypass the detectors, the attacker needs to modify ranges of IP addresses and ports
of attack flows such that their relative uncertainty falls within the range (0.20, 0.80). This can be
easily achieved by increasing or decreasing ranges of appropriate quantities (e.g. the attack flows
spans over more source ports, less source IP addresses, etc.). Notice that the relative uncertainty
depends on the distribution of flows, not on their number. This property simplifies the evasion
strategy. In the presented experiments it was always possible to modify the attack to bypass both
detectors individually.

A.3.2 TAPS

TAPS detector is an implementation of the scan detector presented in [53]. It deems the source IP
address being malicious, if it has flows with either high ratio of destination IP address to destination
ports, or high ratio of destination ports to destination IP addresses.

Although these two ratios can provide bounds that the attack flows have to meet, there is an other
way. As TAPS is designed to detect scans, it evaluates only flows with one packet. Consequently,
to bypass TAPS detector it suffice that all attack flows have at least two packets — such flows are
considered as benign by TAPS.

A.3.3 MINDS

The MINDS detector is a simplification of the detector proposed in [20]. For every flow, it uses
following four quantities calculated over five-minute long window:

– number of flows arriving to the same destination IP address

– number of flows originating from the same IP address

– number of flows arriving to the same destination IP address from the same source port

– number of flows originating from the same IP address and targeting the same destination
port

4The relative uncertainty is in its essence a normalized entropy. Let’s assume that we want have a discrete
random variable x, taking values {1, . . . , k}. We estimate probabilities {p1, . . . , pk} from observations, such that

pi = mi
m

, where m =
∑k

i=1 mi, and mi denotes how many times ith event has occurred in our observations, and

the empirical estimate of the entropy of x is equal H(x) = −∑k
i=1 pi log pi. The relative uncertainty of x is equal

RU(x) =
H(x)

logmin(k,m)
.
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These quantities are individually compared to the same quantities calculated in the previous time
window (if there is no history, default values are provided). The degree of anomaly of a given flow
is determined as a weighted average of differences between quantities from the time window t and
the previous time window t− 1.

To implement the evasion strategy, the history (values from the previous time window) provide us
bounds on the number of flows, the attack has to meet. But as the detector uses only absolute
number of flows, not any other statistics, it is easy to decrease the strength of the attack to fit it
within the bounds. Indeed, the experiments confirm that the detector has a significant impact on
the strength of attacks.

The CAMNEP’s implementation significantly simplifies the prior art. First, it observes only fea-
tures aggregated by the time window. Second, it does not use the advanced anomaly detection
through local outlier factor algorithm [9]. These simplifications were introduced, because as has
been pointed out in the original publication [20], the detector does not scales well with the number
of flows.

A.3.4 Lakhina Entropy and Lakhina Volume

The original Lakhina’s detectors, as described in [32], are designed to detect anomalies in the
backbone traffic, where the statistics is acquired from multiple points. Since the CAMNEP acquires
statistics about the network only from single point, the method is slightly modified to meet the
application constraints.

Both detectors capture state of the traffic on the network in the time window t in a vector xt ∈
R3×nt , where nt is number of source IP addresses with more than 100 flows (we call them active)
in the time window t.

In Lakhina Volume detector number of flows Nt
f (ι), number of packets Nt

p(ι), and number of bytes

Nt
b(ι), of all active source IP addresses ι ∈ {1, . . . , nt} are arranged in one (row) feature vector xtv.

The feature vector xtv corresponding to the time window t is equal to

xtv =
(
Nt
f (1),Nt

p(1),Nt
b(1), . . . ,Nt

f (n),Nt
p(n),Nt

b(n)
)

Similarly, in Lakhina Entropy detector entropy of source ports Ht
sPr(ι), entropy of destination

ports Ht
dPr(ι), and entropy of destination IP addresses Ht

dIP(ι) of all active source IP addresses
ι ∈ {1, . . . , nt} are arranged in one (row) feature vector xte. The feature vector xte corresponding
to the time window t is equal to

xte =
(
Ht

sPr(1),Ht
dPr(1),Ht

dIP(1), . . . ,Ht
sPr(n),Ht

dPr(n),Ht
dIP(n)

)
(A.1)

Since both detectors process feature vectors in the same way, the anomaly detection algorithm is
described below on the general row vector xt.

CAMNEP’s implementation uses feature vectors xt−5, . . . , xt−1 from previous five time windows to
build the model of the traffic on the network. The model is build by means of principal component
analysis (PCA), which transforms the original space, X , where x lives into transformed space Y,
where the transformed coordinates of x are not correlated.

The PCA model is calculated as follows. The row feature vectors from previous five time windows
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xt−5, . . . , xt−1 are arranged in the matrix5

X =




xt−1

...
xt−5


 ∈ R5,N .

If X̄ denotes the centered version of X (mean of its columns of is equal to zero), then kk principal
component yk is calculated as

yk = arg max
w:‖w‖=1

∥∥∥∥∥X̄
(

I−
k−1∑

i=1

yiy
T
i

)
w

∥∥∥∥∥ .

Components {yk}Nk=1 are ordered according to their variance, which means that the first compo-
nents has highest variance, and consequently contains the most information about {xt−5, . . . , xt−1}.

Lakhina’s detectors rely on the assumption that the subspace spanned by the first K principal
components Y1:K = (y1, . . . , yk) is the normal traffic subspace. It has projection matrix P1:K =
Y1:KYT

1:K . Consequently, the residual N −K subspace YK+1:N = (yK+1, . . . , yN ) with projection
matrix PK+1:N = I−P1:K contains the anomalous traffic. In the prior art and in the CAMNEP,
the dimension of normal subspace is set to K = 4.

The traffic feature vector xt from the current time window is decomposed into the part modeled
by the normal subspace x̄t and by the anomalous subspace x̃t. It holds that

xt = x̄t + x̃t (A.2)

x̄t = P1:Kx
t (A.3)

x̃t = PK+1:Nx
t = (I−P1:K)xt (A.4)

Now, if the anomalous part x̃t contains elements in absolute value exceeding a design threshold,
than IP addresses corresponding to these elements are deemed to be anomalous (malicious).

Although the Lakhina’s detectors seems to be complicated, the rationale behind them is simple.
They set bounds on the modeled quantities according to the current state on the network. If there
is an IP address with quantities out of these bounds, it is deemed as anomalous. Consequently,
the evasion strategies to bypass these detectors are similar to the strategies used for the detectors
MINDS and Xu.

To evade Lakhina Entropy detector, we use the PCA model to calculate bounds on the entropies
of source and destination ports, and destination IP addresses. Then, we modify distribution of
the attack flows to meet them, which is exactly what is done in case of Xu detectors for relative
uncertainty (remember that relative uncertainty is just a normalized entropy).

To evade Lakhina Volume detector, we do the same. Once we calculate the bounds on number of
flows, bytes, and packets originating at one IP address, we modify the strength of the attack to
meet the criteria. Again, this strategy is very similar to the strategy used for MINDS detector.

A.3.5 Discussion

From the above elaboration of detectors and evasion strategies, we can conclude that it is always
possible to modify the attack of any strength such that it will bypass individual detectors based

5Because feature vectors from different time windows might have different dimensions, zero values are used to
fill in values corresponding to inactive IP address. This mechanism ensures that all feature vectors xt−5, . . . , xt has
the same dimension N
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on entropies (Xu sIP, Xu dIP, and Lakhina Entropy). On the other hand, detectors observing the
volume of the traffic (MINDS and Lakhina Volume) actually put constraints on the strength of
the attack, which needs to be decreased to meet the criteria. The experiments, presented later
confirms that.

The situation starts to be interesting, when all detectors coordinates together. As each detector
(even the entropy based ones) requires the attack traffic to be modified in different way, it might
happen that it is impossible to modify the attack to conform all detectors. Again, this phenomenon
has been observed in experiments in Section A.5

The conclusions show that the evasion strategy, investigated here, has higher chance for success
than the insertion strategy. The insertion strategy increases the overall volume of the traffic by
adding cover flows that are not directly related to the traffic. Consequently, the probability of
raising alarm by detectors monitoring volume of the traffic (Minds and Lakhina Volume) is higher.

A.4 Experimental details

From the analysis in the previous section it is clear that the evasion strategy has a higher chance
for success. The insertion strategy is harder to implement and the danger of triggering the alarm is
higher. From these reasons, this chapter presents our results on implementing the evasion strategy,
and the insertion strategy is left to the future work.

As was already mentioned in the introduction, we assume the worst case scenario (for the defender),
where the attacker has a full access to all internal states of the CAMNEP NIDS. We also assume
that the attacker has limited resources in the sense that the attack is performed only from one
subnet (i.e the source IPs of attack can differ only in the last octet). Again, scenarios, where the
attacker controls large number of computers (e.g. by using computers infected by botnets) from
different subnets to perform coordinated attack are left to future works.

To simplify the implementation, the attacks are simulated by generating the attack flows within
the CAMNEP system and mixing them with a real traffic. We believe that the simulation does
not have a significant impact on the credibility of the results.

Due to the time continuity, attack flows to be used in the time window t+ 1 needs to be prepared
in the time window t. The attack flows are created such that they are not detected by CAMNEP’s
detectors at the time window t, which means that the degree of anomality on the attack flows is
below the threshold α0 (design threshold specified by the attacker). Notice that due to the time
continuity, the attacker cannot be absolutely certain that the attack flows prepared in the time
window t will be undetectable in the time window t+ 1, since the internal states of detectors and
the background traffic in both time windows are different. But due to high temporal correlation
of flow statistics, the attacker can expect that flows undetectable at the time window t will remain
undetectable at the time window t+ 1.

The attack flows corresponding to a given attack are described by the following properties:

– range of source and destination IP addresses,

– range of source and destination ports,

– range of bytes per flow,

– range of packets per flow,
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– total number of flows,

– layer 4 protocol ID (UDP, TCP, ICMP).

The experiments presented in Section A.5 focus on three common types of attack: the horizontal
and vertical scans, and the brute force cracking of SSH password. These attacks have been chosen
not only due to their ubiquity, but also because their characteristics, are very different from each
other. The characteristics are listed below.
Horizontal scan:

– wide range of destination IPs,

– one destination port,

– low bytes and packets count per flow.

Vertical scan:

– one destination IP,

– wide range of destination ports,

– low bytes and packets count per flow.

Brute force cracking of SSH password:

– one destination IP,

– one destination port.

The characteristics, which are not specified for a given type of the attack are free and the algo-
rithm generating attack flows can manipulate them in order to make the flows undetectable. The
algorithm also verifies that the attack does not lose its main characteristics. For example, a brute-
force cracking of SSH password whose destination port range needs to be increased from one to a
thousand is not a SSH cracking any more. Similarly, changing destination IP address of vertical
scan does not make sense either. To avoid this, we set acceptable bounds on properties (depending
on the type of the attack) that the attack must meet in order to keep its original characteristics.

The attack flows are created by the following iterative algorithm:

1. Create the initial set of attack flows according to the specification.

2. The generated flows are passed to modified anomaly detectors asserting their detectability.
If the level of anomaly exceeds threshold α0, the detectors reports, why it happens and
recommends the modification (e.g. to increase / to decrease entropy of source ports, to
decrease number of flows from / to IP address, etc.).

3. If none of the detectors raised alarm on the flows, the generation is finished. Otherwise, the
flows are modified as suggested by most detectors and the algorithm proceeds back to step
2.
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The attack generation loop iterate unless either the attack flows meet all criteria (it is not detected
and the attack did not lose its properties), or the loop exceeds certain number of iterations. In the
latter case, it is assumed that the attack meeting given criteria, current state of the IDS, and the
current state of the observed network is impossible.

In all experiments presented in Section A.5, the initial strength of the attack is set to twice the
strength of the attack from previous time window. If the attack in the previous time window was
not successful, the strength is set to 150 flows per five-minute long time window. By adopting
this simple strategy, it is possible to reach the maximum strength of the attack within few time
windows.

Once the attack flows are generated, they are mixed with the observed traffic in the next time
step. If it is not possible to construct an undetectable attack, the system does not insert any flows
and it is signaled that the generation of attack flows has failed.

The strength of the generated attack is controlled by a threshold, α0, on the anomaly level signaled
by detection agents on attack flows. The algorithm responsible for generating the attack flows
always try to create attack of maximum strength (number of flows) without exceeding the threshold
α0.

A.5 Experiments

In this section, we experimentally evaluate the success of the attacker in bypassing the CAMNEP
IDS. For all experiments, we have used traffic captured from the university network with approx-
imately 25 000 flows per five-minute time window as a background traffic. As we are interested
only if flows simulating attacks are detectable, we do not need the traffic to be labeled.

In Section A.3, we have emphasized that the detectability and the strength of the attack depends
on the state of the IDS and on the background traffic. We can expect that during working hours,
when the network is very busy, the attack will more likely to be hidden then at night, when the
traffic on the network is relatively low. To investigate these effects, the used network capture spans
full 24 hours (300 five-minute time windows). The attacks were designed such that the degree of
anomaly was below α0 = 0.1 on 0–1 scale. The attacks were initiated after 50 minute long warm-up
period, which allows the CAMNEP system to reach its working conditions.

A.5.1 Vertical scan

Figure A.1 shows the evolution of the strength of vertical scan attack, measured as a percentage
of number of attack flows in the total number of flows in the background traffic. We have first
experimenting with bypassing individual detection algorithms, and then with bypassing all of them
acting simultaneously (denoted by caption the label “all”). We can observe that strength of the
attacks against Xu sIP, Xu dIP, Lakhina Entropy, and TAPS detectors can grow indefinitely at
exponential rate in our testing environment. From this reason, we stopped the experiment for
these four agents after processing 20 five-minute long snapshots (10 snapshots for warm-up and
10 for generating the attack). Note that this is on par with our theoretical elaboration made in
Section A.3, as first three agents uses entropy measures to assess the level of anomalousness.

On the other hand, attacks bypassing Lakhina Volume and Minds detectors reach their maximum
strength after short period with average strength 6.23%, 0.72% respectively, of the volume of
the background traffic (this corresponds to 1 321, 172, respectively flows per 5-minute long time

106

Distribution A:  Approved for public release; distribution is unlimited.



January 16, 2012 Final Report

0

20

40

60

80

3:
20

p
m

7:
30

p
m

11
:4

0
p
m

3:
50

am

8:
00

am

12
:1

0
p
m

16
:2

0
p
m

time step

p
er

ce
n
ta

ge
of

th
e

b
a
ck

g
ro

u
n
d

tr
a
ffi

c

Xu sIP, Xu dIP, TAPS, Lak. ent.
MINDS
Lakhina volume
all

Figure A.1: Evolution of the strength of the vertical scan attack targeted to bypass individual
detection agents, and all agents collaborating together (label “all”). The strength of the attack is
measured as a percentage of total number of flows in background traffic.
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Figure A.2: Evolution of the strength of the horizontal scan attack targeted to bypass individual
detection agents, and all agents collaborating together (label “all”). The strength of the attack is
measured as a percentage of total number of flows in background traffic.

windows). The Minds detector seems to be the most difficult to be bypassed individually, as the
attack strength was the lowest and sometimes, it was impossible to generate the attack flows (the
attack was created with rate of success 93% (see Table A.1).

The graph on Figure A.1 further reveals that the strength of attacks changes with time (the time
period of our capture is from 3:20pm to 4:15pm the next day). It is interesting to see that the
attack against Minds agent has its maximum strength during night hours, and from approximately
7:00am, the strength declines. Although these observations contradicts our initial assumption that
attacks are easier to detect in night hours, when the traffic on the network is relatively low, then
during busy hours, they can be easily explained. During day hours, there is an additional traffic
interfering with the attack. The MINDS detector checks that the absolute number of flows does
not exceeds the threshold. Thus, if we sum background and attack traffic together, the space left
for the attack is smaller during day hours. The same holds for the Lakhina Volume detector.

A.5.2 Horizontal scan

Figure A.2 shows the evolution of the strength of horizontal scan attack. Although the undetectable
strength is approximately two times larger that the undetectable strength of vertical scan attack
discussed in the previous section, the conclusions are pretty much the same. It is possible to
launch attacks of exponentially increasing strength bypassing Xu sIP, Xu dIP, Lakhina Entropy,
and TAPS detectors. Similarly, attacks bypassing Lakhina Volume and Minds detection agents are
possible, but their strength is limited to 13.7% and 2.06%, respectively, of background traffic (this
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Figure A.3: Evolution of the strength of the brute-force cracking of SSH password targeted to
bypass individual detection agents, and all agents collaborating together (label “all”). The strength
of the attack is measured as a percentage of total number of flows in background traffic.

corresponds to 3 155, 313 respectively, flows per 5-minute long time windows) .

A.5.3 Brute-force cracking of SSH password

The very same, as has been seen in the cases of planting undetectable horizontal and vertical
scans holds for brute-force cracking of SSH passwords shown on Figure A.3. Again, Xu sIP, Xu
dIP, Lakhina Entropy, and TAPS detection agents can be bypassed at anomaly rate below 0.1,
and Lakhina Volume and Minds detection agents can be bypassed, but with considerably lower
strength of attack, which is on average 5.89% and 0.85%, respectively, of background traffic (this
corresponds to 1 021, 141 respectively, flows per 5-minute long time windows)

A.5.4 Power of plenty

In Figures A.1, A.2, A.3, and in Table A.1 we can also observe strength of attacks designed to
simultaneously bypass all detectors acting together (caption “all”). This means that the level of
anomaly of attack flows of all detectors has to be below α0 = 0.1. We can see that bypassing all
detectors cooperating together is more difficult than bypassing just one detector, which has been
discussed above. In fact, the algorithm described in Section A.3 was not able to generate attack
flows performing horizontal and vertical scans. Although it was possible to generate attack flows
performing SSH brute force password cracking, the strength of the attack was only 0.14% of the
background traffic (35 flows per five-minute). Taking into the account that brute force cracking of
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Detector
horizontal scan vertical scan SSH bruteforce

strength success strength success strength success

Lakhina Volume 13.7% 100% 6.23% 100% 5.89% 100%
Lakhina Entropy +∞ 100% +∞ 100% +∞ 100%
MINDS 2.06% 92.36% 1.09% 93.05% 0.85% 85.06%
TAPS3D +∞ 100% +∞ 100% +∞ 100%
Xu sIP +∞ 100% +∞ 100% +∞ 100%
Xu dIP +∞ 100% +∞ 100% +∞ 100%
All 0 0% 0 0% 0.14% 79.16%

Table A.1: The average strength (in percents of background traffic) of attacks generated to bypass
detection agents at anomaly level α0 = 0.1. Column strength enumerates rate of successfully
creating attack below the detection threshold.

password usually requires very large number of trials, having only 7 trials per minute makes the
threat from SSH brute force attack virtually harmless.

A.6 Conclusion and future work

The goal of this chapter was to investigate, if the knowledgeable attacker can modify his attack,
such that intrusion detection systems based on anomaly detection paradigm will not raise any
alarm. The presented scenario captured the worst case point of view of the defender (IDS), where
the attacker has full access to all internal states of the IDS system and it has the same view on
the monitored network.

The chapter elaborated two complementary strategies to fool the IDS. The evasion strategy tries to
decreases the strength of the attack. On the other hand, the insertion strategy adds supplemental
flows unrelated to the attack to either conceal the attack flows, or to modify the internal states of
the IDS. It has been explained, why the first strategy is more dangerous and why it is more likely
to happen in practice.

We have implemented the evasion strategy against commercially available CAMNEP network in-
trusion detection system, which employs six detectors based on anomaly detection paradigm. The
experimental results has confirmed that it is indeed possible to construct attacks bypassing indi-
vidual detectors. But creating attack flows bypassing all detectors acting together has proved to be
more challenging. In fact, our algorithm used to generate the attack failed to perform undetectable
horizontal and vertical scans. Although the algorithm managed to generate undetectable cracking
of SSH password, the strength of the attack was so low, that the attack was practically unusable.

The results emphasize the importance of ensemble based approach towards intrusion detection
system, as it has been experimentally proved that bypassing one detector is easy, but bypassing
many of them is very difficult, even impossible.

Moreover, the results suggest that manipulating the internal states of ensemble based IDS might be
very difficult to achieve in practice. The additional traffic needed to manipulate internal state of one
detector might raise alarm of the other detector. Consequently, the attacker needs to manipulate
internal states of all detectors simultaneously, or manipulate one and avoid the detection of others.
Although this seems to be very difficult, this approach represents a threat and it is our plan to
investigate it.
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We also note that the presented scenario was the worst case for the defender, as the attacker had
access to all internal states of the target system and it had the same view on network. We would
like to investigate more realistic scenario, where the attacker runs his own version of CAMNEP
with different, only partially overlapping view on the network. In this case, the attacker does not
have access to the internal state of the target system and uses his own to generate the attack. As
both systems have different internal states, the generated attack might be detectable by the target
system, but this remains to be verified.
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Abstract—We present an empirical study of distributed adap-
tation in an Intrusion Detection System. The adaptation model
is based on a game-theoretical approach and we use regret
minimization techniques to find globally robust behavior. We
compare the effectiveness of global optimization, when all system
components adopt the globally optimized strategy in a synchro-
nized manner, with a fully distributed approach when two layers
in the system adapt their strategies as a result of local adaptation
process, with no synchronization or signaling. We show that the
use of regret minimization techniques results in stable and long-
term optimized behavior in both cases. Our experiments were
performed on CAMNEP, an intrusion detection system based on
analysis of NetFlow data, and were performed on the university
network over one month.

Index Terms—IDS, Adaptation, Game Theory, Regret mini-
mization

I. INTRODUCTION

Network Intrusion Detection/Protection Systems (IDS)
are designed to identify and possibly block undesirable
traffic detected on computer networks. Most of the current
systems [1] are based on the signature matching paradigm:
they inspect the content of the transferred data and look for
the signatures of known attacks, in principal being similar to
the anti-virus solutions. While being very effective against
well-known threats, these systems are ineffective against new
kinds of attacks: they are not able to combat threats that
can not be defined by a simple signature, e.g. polymorphic
malware, custom-written malware/attacks, malware command
& control traffic or information exfiltration. Therefore,
organizations that need an additional level of security
typically protect themselves with the IDS systems based on
the anomaly detection principle [2]. These systems do not
try to identify specific attacks, but rather use past behavior
of the network to predict its future behavior and report any
significant differences between the prediction and the actual
behavior.

The key parameters of the anomaly-based IDS are its
sensitivity (detection rate or true positive rate) and the false
positive rate. True Positives (TP) are the malicious events
correctly detected by the system, while the False Positives
(FP) are the false alarms raised by the system. Any practically
usable IDS needs to keep the rate of false positives down,
while maintaining the sensitivity. As the network conditions

change over time, the IDS may need to change its behav-
ior/configuration to adapt to the changing conditions. Formal
approaches based on control theory are commonly used to
formalize the adaptation process and to ensure that basic
properties are satisfied in wide range of naturally occurring
environments [3].

However, the control-based approach to reconfiguration is
not without risks in when we face intelligent adversaries.
The most sophisticated attackers are becoming aware of the
anomaly-detection-based IDS and might be able to use specific
techniques to circumvent them by inferring their internal
state and modifying their behavior accordingly. They can also
behave strategically in order to influence the internal state of
the IDS towards lower sensitivity [4], [5], [6] or towards higher
rate of false positives, both of which would make the system
unusable. The existence of unsecured control mechanism in-
creases the potential for the attack, and most formalisms based
on control theory do not address adversarial manipulation. To
address this threat, the adaptation mechanisms needs to be
based on game-theoretical principles. The game theoretical
methods are designed to carefully weight the optimality and
predictability of system behavior [7], [8], [9] and to guarantee
system properties against strategically acting attackers.

In our work, we consider yet another aspect of this prob-
lem: the actual feasibility and practicality of such strategic
adaptation in an intrusion detection system, distributed both
functionally and geographically. We argue that given the
current level of de-facto standardization in the domain, it is
reasonably simple to integrate an IDS from the components
provided by multiple vendors, as the data transfer formats are
typically robust and based on open standards or open-source
implementations. On the other hand, the adaptation communi-
cation/collaboration standards are virtually non-existant and
could make the strategic adaptation of such composed systems
problematic.

II. REGRET AND REGRET MINIMIZATION

Regret minimization is an algorithm that attempts to achieve
long-term optimality in a sequence of identical games. It does
not require any knowledge of other players’ utility functions
or the communication between players (players are denoted as
P ), but is based on independent loss minimization performed
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by the individual players given the payoffs received for their
past moves.

The regret, or more specifically the external regret, is
defined [10], [11] as an ex-post evaluated loss of utility due to
the suboptimal strategy selection - thus the term regret. Due
to the properties of our problem as imposed by the design of
our system, we assume full information model, i.e. we assume
that player P has access to all payoff values of all strategies
x from the set X in any time step in the past1. It shall be
noted that the regret minimization method does not require
the players to know the utility function and/or goals of the
opponents – the strategy played by the agents is based only
on the feedback that they receive.

We define lt as the loss related to the use of one defender’s
strategy in the time step t. Note that the strategy is not
explicitly denoted2 in the notation. Then, we define the loss
aggregated over time as:

LT =
T∑

t=T−N
lt (1)

and the regret as follows:

RT = LT −min(LT ) (2)

This represents the difference of (hypothetical) payoff en-
countered upon (hypothetical) playing of this strategy (or using
a particular strategy selection algorithm) and the best payoff
available over the set of player’s strategies X .

The regret value is then used in a polynomial weights regret
minimization (PWM) algorithm [12]. In the PWM algorithm,
the player P selects the strategy x with a probability that
is inversely proportional to the regret. Formally, we define
weight wt assigned to each strategy x at time t and pt, the
corresponding probability of playing the strategy x. Initially at
time 1, all the strategies x from the set X receive the identical
weights and probabilities:

w1 = 1 and p1 =
1

|X| ,∀x ∈ X (3)

With increasing time, more and more games are played and
the values wt and pt assigned to individual strategies are
determined as follows (with η = 0.2, as the convergence
proof [10] requires η < 0.5):

wt = wt−1(1− ηLt−1) (4)

W t =
∑

x∈X
wt (5)

pt =
wt

W t
(6)

Amortized loss for dynamic environment. The loss/regret
function used in our experiments includes time-amortized loss

1This contrasts with a partial information model, where the players only
have access to the results of strategies actually played in the past.

2Some authors use index i to emphasize the loss lti relevance to a particular
strategy xi. In our case, we omit this index to make the notation lighter in
context of multi-player game as it will be introduced in Section III.

accumulated over the last N time periods, rather than over the
totality of history. The Eq. 1 is thus modified as follows:

LT = ωLT−1 + (1− ω)lT (7)

The use of Eq. 7 with ω = 0.5 instead of simple loss
accumulation accounts for the fact that real-world players can
join and leave games dynamically, and that the characteristics
of the game can change dynamically. This is a generalization
of traditional regret definition, but it is consistent with previous
work, and key properties of the PWM method still hold as
shown in [11].

A. Properties

Regret minimization is a robust method that yields pre-
dictable results in a wide range of games. In a static envi-
ronment, it can be shown that the use of the proper regret
minimization algorithms (like the one described above) bounds
the maximal loss achieved using external regret minimization
by the term O(

√
T log |X|) relative to the best loss achiev-

able [10]. This is a general result that can be applied outside
of game theoretic frameworks.

In the specific case of two-player, zero-sum games, the use
of regret minimization will make the player’s payoffs converge
towards the value of the game, with the speed of convergence
bounded by the term above. This result can be generalized
for a far broader class of games. Hart and Mas-Colell show
that if all players play regret minimization in a sequence of
static games, the joint distribution of play converges [13],
[11] to the set of correlated equilibria [12], [14] of the stage
game. One of the important corollaries is that the probability
of strategy switching decreases as well, making the players
reach increasingly longer sequences of constant strategy play.

The correlated equilibrium is an extension of the well-
known Nash equilibrium (i.e. stable point in the strategy space
where none of the players benefits from unilateral deviation)
by assuming that the players can either communicate, or can
observe a common variable(s), or share a history of gameplay.
All these specific examples are special cases of a correlating
device [10]. Such a device produces a set of (correlated)
signals, one for each player, which use for strategy selection
in the game. It can be shown that when the signals are fully
correlated (e.g. when all players share a single public signal),
the correlated equilibria set equals the convex hull of Nash
equilibria.

On the other hand, convergence to the smaller set of Nash
equilibria is possible, but is guaranteed only in very specific
types of game, and not guaranteed at all in the general
case [15]. In particular, in the two player, zero sum game
example mentioned above, the game converges, but counter-
examples of non-convergent games can be found even for
simple three player games, such as the Shapley game [16]. In
non-zero sum games with more than two players, the regret-
minimizing algorithm provides robust results when other ap-
proaches may fail.

The results of [17] suggest that regret minimization is also
robust in zero-sum finite extensive-form games with perfect
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recall when applied across independent information sets in
the game. The regret (counterfactual regret) is measured and
minimized on information sets in the game and the authors
show that minimization of the counterfactual regret in indi-
vidual game stages bounds the overall regret of the global
game – albeit only in a very specific class of games. This is
an extremely important property, as it hints that at least some
of the regret minimization properties may hold when we split
one of the players into several partial players, each of them
selecting a fraction of the original player’s strategy.

It is also important to note that we do not oblige all players
to use regret minimization (even if we do so in the experiments
in Section V). Regret minimization also performs robustly
against the rational players who simply play their own equilib-
ria strategies obtained by other methods. When the opponents
play stable non-equilibria strategies, regret minimization is
likely to benefit from the sub-optimality.

The question of convergence is further complicated in the
dynamic environment. The algorithm’s convergence speed
becomes critical, as it needs to converge within the time
interval when the environment (which defines the structure
of the game) is relatively stable, making the set of correlated
equilibria also stable. This also implies that the value of the
past history decreases with increasing time difference, making
us adopt the amortized loss function as defined by Eq. 7 to find
the balance between the robustness and speed of convergence.

III. FORMAL PROBLEM STATEMENT

We assume that one distributed intrusion detection system,
which can be decomposed into autonomously acting agents,
plays against one opponent. The Defender system PD consists
of two layers P 1

D, P 2
D, each layer consists of one or more

agents that implement one functionality/activity. Defender’s
strategies xD are drawn from the set XD and can be decom-
posed into distinct individual layer strategies: x1D, x

2
D from

the mutually orthogonal subspaces X1
D and X2

D of the space
XD. We have implemented the attacker PA (and P 1

A,P 2
A) as

a model of the attacker implemented within the system [18].
Typically, this also consists of one or more agents that realis-
tically represent the goals, utility functions and actions use by
the real attackers. This is by no means necessary for the regret
minimization approach to work. We have opted for this method
as it is easier to determine the Nash equilibria and correlated
equilibria in the game. The details of attacker modeling will
be discussed in Section IV. Attacker’s strategies xA (same in
both game variants below) are drawn from the set XA and
correspond to the realistic attack actions that may harm the
protected network. Each strategy corresponds to one individual
attack technique available to the attacker. For simplicity, we
assume that attacker’s action spaces are identical (XA) in both
layers when the game is played in the distributed form.

Two game variants are defined as follows:
• Global game: In this traditional formulation (Fig. 1) used

as a benchmark, we build and solve a two player game
of the attacker PA against the defender PD. Defender
selects full strategies xD for both layers simultaneously,

Outputs (IDS Alerts) 

Network Traffic

Global Game
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Level 1
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Fig. 1. Problem formulated as a global game.
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Fig. 2. Problem formulated as two games correlated through the effect
on the network traffic and detection results. Note that both layers apply
their strategies independently and that the strategy applied by the first layer
influences the inputs of the second layer.

and has full access to all relevant system and environment
state variables to build and update the global utility
function uD. In this setup, the defender is able to directly
identify global optima in the global strategy space. On
the other hand, finding the equilibria of the global game
and reasoning about the selection of the optimal strategy
becomes increasingly computationally difficult as the
dimension of the strategy space grows. The game is
formulated as follows:

G = ({PA, PD}, {XA, XD}, {uA, uD}) (8)
uA : xA × xD → R (9)
uD : xA × xD → R (10)

The utility functions of the attacker uA and the defender
uD are defined as functions of the global strategies.

• Distributed game: In our formulation of the game
(Fig. 2), each of the layers P 1

D and P 2
D (and P 1

A and P 2
A)

plays as an independent player. Therefore, we have a four
player game, with the players P 1

A, P
2
A, P

1
D, P

2
D, where

the couples of the players should be ideally optimizing
a shared utility function. In practice, though, the utility
functions (on the defender’s side) differ, as the internal
state of the players P 1

D and P 2
D is mutually inaccessible

(for integration reasons), meaning that their dynamically
updated utility functions can only rarely be identical. This
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defines the distributed version of the game as follows:

G = ({P 1
A, P

2
A, P

1
D, P

2
D}, {XA, X

1
D, X

2
D},

{u1A, u2A, u1D, u2D}) (11)
u1A : x1A × x1D → R (12)
u1D : x1A × x1D → R (13)
u2A : x1A × x2A × x1D × x2D → R (14)
u2D : x1A × x2A × x1D × x2D → R (15)

For higher generality, we break down both players and
also both player’s utility functions into u1A and u2A
for the attacker and u1D and u2D for the defender. In
practice, most attackers will just use a single strategy
and utility function in both levels of the game, resulting
in u1A = u2A and x1A = x2A, and the game will degenerate
into a three player game3. Note the distinction between
the two layer’s utility functions, where the first layer’s
results are independent of the second layer’s actions,
while the results of the second layer depend on both.
Effectively, the utility function u2D would typically be
the same as uD, with the notable difference that only
the action x2D is under the control of the player P 2

D,
while the action x1D is selected independently by the
player P 1

D, who optimizes its own utility function u1D.
We do not require the players P 1

D and P 2
D to know each

other’s utility functions, but their consistence with uD
determines whether the distributed game results in the
same equilibria as the global game.

The notion of independent optimization in the distributed
game where only one of the layers depends on the actions
of the other, and is not explicitly informed about the action
played by the first layer, makes the game consistent with
the formalization based on extensive-form games introduced
in [17] and discussed in Sec. II-A. As the defender’s second
layer is not informed about the strategy x1D played by the first
layer, it performs the selection of x2D in the same information
set regardless of the x1D. Likewise, the first defender player
is typically not able to infer the strategies played, payoffs
received or the internal variable states of the second level
player.

Both formulations will be solved by the regret minimiza-
tion algorithm introduced in Section II, in one case by two
players, in the other by four players playing independently.
We are facing a dynamic optimization problem, where the
environmental conditions imposed by the external environment
can change rapidly, making the game similar to a sequence of
static games with unpredictable length. In the next section, we

3The three player formulation would be:

G = ({PA, P 1
D, P 2

D}, {XA, X1
D, X2

D}, {uA, u1
D, u2

D}) (16)

uA : xA × x1
D × x2

D → R (17)

u1
D : xA × x1

D → R (18)

u2
D : xA × x1

D × x2
D → R (19)

Graphically, this would correspond to the attacker from Fig 1 playing against
the defenders from Fig. 2

will introduce a specific instantiation of the above model on
a specific intrusion detection system.

IV. EXPERIMENTAL SYSTEM

The experiments were performed inside the CAMNEP [19]
Intrusion Detection System which was de-coupled into two
layers to allow the evaluation of the above-described prin-
ciples. The first layer is the preprocessing layer, where
the NetFlow/IPFIX [20] data from the network is received,
preprocessed and possibly sampled using a dynamically se-
lected sampling strategy. The preprocessing layer is followed
by the detection layer where a set of anomaly detection
methods performs a collective analysis of the received data
using statistical and information models of network traffic.
The detection layer of CAMNEP has been designed to adapt
to the network situation and to select the optimal aggregation
strategy – the mix of weights to assign to the outputs of
the anomaly detection methods – so that the system can dy-
namically find the best combination of opinions for the given
environment. Selection of both the sampling algorithm, rate,
and the appropriate aggregation strategy (that are obviously
linked) are crucial for system performance.

Characterization of the immediate system performance is
a difficult problem, as manual feedback is nearly impossible
due to the sheer volume, and rate of input data, and general
unavailability of any ground truth about their nature. There-
fore, we use a challenge insertion mechanism that modifies
the input data of the system by inserting a small number of
classified events from the past, belonging to both legitimate
traffic and various attack classes. These challenges [18] are
processed alongside of the real input data, used for system
component/strategy characterization/evaluation, and then re-
moved from the output data produced by the system.

The game as described below is actually played between
two opponents inside the system. One of them, the defender
PD, uses the challenge processing results to select the best
sampling strategy x1D and aggregation strategy x2D (whose
combination in the global game is denoted xD). It then plays
against the attacker’s model PA that determines and exploits
the system vulnerabilities in the same manner as the worst-case
real attacker would by playing its attack strategies represented
by challenges: x1A, x2A or the global strategy xA. The dynamic
optimization achieved by this method is crucial, as the system
constantly reconfigures itself to counter the worst case attacker
(with full access to its internal state) on the background of the
current network traffic.

Specifically, the lower layer has to select one of five
predefined sampling methods, each with two different ratio
settings. The detection layer has to select a single aggregation
function from a static finite set.

The system operates sequentially, processing one batch of
data every five minutes. Each data set defines one game in
the sequence. When the challenges are inserted, all players
use the results of their processing to determine the regret
value for each available strategy and then commit to the
strategy selected by the algorithm presented in Sec. II. The
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final strategies of the defender (or defenders) are then used to
process real network data from the current batch.

Defender (CAMNEP) has to satisfy safety demands, it tries
to lower the probability of undetected attacks, and at the
same time optimizes the usage of computational resources.
Conversely, the attacker tries to attack the system while
avoiding detection. Thus the attacker has to find the best attack
type and size to fit under the detection threshold by exploiting
the flaws either in the sampling or aggregation strategy.

A. Global Game

In the global game, the defender performs global optimiza-
tion and identifies the best strategy xD from the set XD,
effectively looking for the best combination of input data
sampling and the anomaly detector’s aggregation scheme.

The utility function of the defender in the global game
has three principal components: the first term deals with
successfully detected attacks, the second term represents the
loss associated with undetected attacks, and the third term
describes the overhead of the monitoring, which consists of
the false positive costs and the fixed cost of monitoring.

Individual utility functions of the global game for both
players (adapted from [7] and made more realistic) are defined
as follows. Defender’s utility is:

uD(xD, xA) = α(DD(xD)− CTP) + (1− α)γPD(xA)

− βV CFP − CM (20)

where α denotes the probability that a particular attack strategy
xA is detected when the defender selects the defense strategy
xD; DD(xA) denotes the defender’s payoff for attack detec-
tion; CTP denotes the (average) cost of processing of each
successfully detected incident (true positive) for the defender;
γ denotes the probability of attack success; PD(xA) denotes
the defender’s payoff/loss on attack success; β denotes the
probability that a given detection strategy, combined with
current system state and background traffic, will result in a
false positive; V denotes the background traffic volume that is
used to estimate the number of false positives in combination
with the parameter β; CFP denotes the average cost of a false
alarm for the defender, used in conjunction with β and V to
estimate the false positive cost; and CM denotes the fixed cost
of monitoring infrastructure, independent on attack or traffic
intensity.
Attacker’s utility can be described as:

uA(xD, xA) = αDA(xA)+(1−α)γPA(xA)−CA(xA) (21)

where α and γ are the same as described above; DA(xA)
denotes the attacker’s payoff/loss on detection; PA(xA) de-
notes the expected utility the attacker receives upon successful
realization of given attack action from the attack class corre-
sponding to strategy xA; CA(xA) denotes the cost of the attack
performance on the part of attacker.

B. Distributed Game

As we have defined in Sec. III, the optimization problem
in the distributed game is separated into two different games
solved independently. Thus, we have to define four different
utility functions for four independent players P 1

A, P
1
D and

P 2
A, P

2
D.

On the first layer, the player P 1
D, i.e. the defender, optimizes

the selection of the best sampling method which preserves
as much information necessary for detection as possible and
at the same time optimizes the volume of traffic. These
contradictory requirements can be summarized into following
equation:

u1D(x1D, x
1
A) = ξD(1− |Φs(x

1
D)|

|Φ| ) + ϑD
|Is(x1D)|
|I| +

µD|{c ∈ C||cs(x1D)| > ε}| (22)

where |Φs(x
1
D)| is the number of flows in the dataset after the

sampling using the strategy x1D; |Φ| represents the number of
flows in the whole dataset before sampling; |Is(x1D)| is the
number of distinct IP addresses in the sampled dataset; |I| is
a number of distinct IP addresses in the unsampled dataset; C
is the set of challenges inserted into the traffic, as described in
Section IV and |cs(x1D)| represents the number of flows from
inserted challenge c after sampling, using method x1D. The first
additive term emphasizes the need to sample as much traffic as
possible, the second, emphasizes the need to preserve as much
diversity as possible, using the source IP as the most important
feature, and the third term represents the need to keep enough
information from each challenge (here used as a representative
of a typical incident) for further analysis. All three terms are
contradictory, and ξD = 1, ϑD = 2 and µD = 1

2 are constants
assigning the relative importance to the different parts of the
utility.

Attacker’s utility function can be summarized as follows:

u1A(x1D, x
1
A) =

1

|C|
∑

c∈C
(1− |cs(x

1
D)|
|c| ) (23)

where C is the set of all challenges inserted in the current
dataset, term |c| represents the volume of the challenge c, i.e.
the number of flows and |cs(x1D)| again represents the number
of sampled flows from challenge c obtained using the sampling
strategy x1D. Thus, from Eq. 23, it can be seen that the goal of
the attacker in the first level of the game is to perform an attack
with as high volume of traffic as possible, thus increasing the
speed of probing or brute force operations, which are sampled
as little as possible.

Utility functions in the detection layer are nearly as identical
in the global game as they are for both attacker and defender.
This is logical, as their values determine the same output with
the only difference being formal. This is due to the fact that
the first level sampling strategy is imposed by the first layer,
rather than optimized together with the aggregation (or attack)
strategy.

The second layer of neither the attacker, nor the defender
gets information regarding the strategies used in the first layer,
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Fig. 3. Convergence of regret minimization in the global game. Note far
larger strategy space which is finally reduced into the single strategy.

and the only implicit information passed between the layers
is the shape of the data after the application of the sampling
strategy.

V. EXPERIMENTAL EVALUATION

The experiments presented bellow were performed on the
CAMNEP system deployed on the university network and
processing the data from single campus building – 200-300
users, with approximate bandwidth in hundreds of Mbits/sec
and about 30-50 thousand flows in each 5-minute long dataset.
We have used 1000 datasets in a series, capturing roughly four
days of traffic and in one case, we have verified the properties
on about 8 000 datasets, extending the runtime to 28 days.

The first issue to validate is the convergence of the global
game towards the set of correlated equilibria (delimited by
the Nash equilibria). Even before that, we need to deter-
mine whether the global game converges from the defender’s
perspective, i.e. whether the strategies selected by the regret
minimization algorithm are stable. In Fig 3, we can see that
the global player can chose from 220 different strategies,
defined as a Cartesian product of 10 sampling strategies and
22 detection strategies. We can clearly see that the behavior
is stable. During the first 100 datasets (about 8 hours), the
system tries several strategies before slowly converging to a
single pure strategy which becomes dominant after about 1
day of uptime.

We can also see that the sampling game (Fig. 5) behaves
similarly, although on a much smaller support. At the begin-
ning, it quickly converges to the sequence of mixed strategies
with two components, but the composition of couples evolves
over time, before it stabilizes after about 200 time periods.
However, the fact that the lower layer settled on a 50:50 mix
of two strategies causes major problem for the the second
detection layer, as it can only guess which of these two pure
strategies is currently being played. In Fig. 4, we can observe
the effects on the detection layer. At the beginning (first 50
datasets), there are 4 strategies with significant values of pt,
i.e. with non-negligible probabilities of being played. Then,
the system settles on a mixed equilibria of two strategies (17
and 12), before settling on a combination of the long-term

Fig. 4. Selection probabilities obtained by the PWM algorithm in the
defender’s detection game.

Fig. 5. Selection probabilities of individual strategies in the defender’s
sampling game. Note the progressive disappearance of most strategies, rapid
convergence at first to the strategies 2 and 4, and finally to 1 and 3.

dominant strategy number 17 occasionally complemented by
the strategy number 4.

The dominant detection game strategy picked in both the
global and distributed game is the same – the detection part
of the strategy selected in the global game is strategy 17 from
Fig. 4. On the other hand, the sampling strategies selected in
both games overlap, but are not identical. The global game
selects the optimal choice, while the distributed version of the
sampling game alternates this selection with the second, very
similar strategy.

Above, we have confirmed that both games converge and
rapidly achieve robust behavior. However, we still need to
assess whether the regret minimization algorithm is able to
identify the Nash equilibria, as this is not guaranteed in
a dynamic system. In Fig. 6, we can see that the payoffs
realized by the global game in both the sampling stage and
the detection stage quickly converge towards the region of
correlated equilibria. These sets of correlated equilibria are not
shown for clarity, and we only depict the pure Nash equilibria
that delimit them. This is not a problem, as we can see that
the convergence is quick and robust in both dimensions. We
can therefore conclude that in our particular case, the system
even outperforms the theoretical guarantees and the strategies
selected by the regret minimization coincide with the Nash
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Fig. 6. Payoffs for the defender’s strategies in the global game plotted against
the positions of the pure Nash equilibria. X axis shows the detection payoff,
while the Y axis shows the sampling payoff for each strategy selected or
the Nash equilibria. Only randomly selected (1 out of 10) results shown for
clarity.

equilibria in the long run.
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Fig. 7. Payoffs for the defender’s strategies in the distributed game plotted
against the positions of the pure Nash equilibria. X axis shows the detection
payoff, while the Y axis shows the sampling payoff for each strategy selected
or the Nash equilibria. Only randomly selected (1 out of 10) results shown for
clarity. Note larger dispersion and the effect of mixed strategy selection in the
sampling game - two payoff levels are clearly visible for both the equilibria
and the game results.

The convergence of the distributed game is slower. Fig. 7
shows that the detection game payoff also converges into the
region of Nash/correlated equilibria, but that this region is
significantly larger (wider) than in the global game (Fig. 6).
This is due to the fact that the regret minimization in the
sampling game results in mixed equilibria, as discussed above.
In Fig. 7, we can see the smaller payoffs corresponding to the
selection of sampling strategies other than the strategy number
17. Use of the other strategies (mainly strategy 4) results in
sampling payoffs lower than the standard 0.95. Fig. 8 shows
the combination of the above figures. We can see that the
global game payoffs in the detection dimension are on average
higher than the corresponding payoffs for the distributed game,
a point that we will investigate further.

VI. RELATED WORK

The problem of reconfiguration and parametrization (both
runtime and offline) of intrusion detection systems has been
addressed from several perspectives, even if the direct use of
game-theoretic principles is relatively rare and most contrib-
utors present the solutions applied for offline use [21], [22],
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Fig. 8. Payoffs of the defender’s strategies for both the global game (from
Fig. 6) and the distributed game (from Fig. 7), plotted against each other. Only
randomly selected (1 out of 10) results from the first 500 datasets shown for
clarity. Note the lower dispersion and higher payoff in the detection dimension
for the global game results.

[7], [8], when they identify the environment parameters static
system and adapt the IDS to this static viewpoint. Roy et al. [9]
present an overview of game-theoretical models of the network
intrusion detection problem.

The initial work of Alpcan [21] analyzes the IDS game
as a sequence of interactions between strategically reasoning
opponents and a network of IDS sensors, in the format of
two player, single act finite game with dynamic information.
In [22], Alpcan and Basar extend [21]. Their formalism,
based on a combination of Markov games and Q-learning,
links the agent’s performance as a detector/learner to its game
performance by representing the imperfect information. The
utility function that we use is based on the work of Chen [7],
but we have included supplementary terms that represent real
world concerns, and make the game decidedly a non-zero sum
game.

In [23], Al-Nashif et al. proposed a multi-level IDS. In
their system, they use various intrusion detection techniques on
different levels, such as signature-based intrusion detection and
stateful protocol analysis. In order to fuse the different levels,
they compute a linear combination of their outputs. If the
different levels disagree too much on their classification, they
are separately trained by means of supervised learning. We
follow another approach where the different agents are cross-
linked to optimize their classifications. Then, we eventually
choose the best-performing agent that is selected according to
the explicit detection priorities specified by the threat model.
An alternative approach to multi-model intrusion detection is
based on the use of ensemble classification approaches [24].
However, these techniques require a pre-classified training data
set and do not dynamically adapt system to the changing
conditions.

VII. CONCLUSIONS

This paper contributes to the development of robust and
survivable distributed intrusion detection systems (and also
other systems where the same abstract model can be fit)
by introducing a collective adaptation paradigm which is
not based on explicit communication, but on the individual
adaptation of components working on the shared data. From
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a research perspective, our work is based on results regarding
the convergence of regret minimization approaches to the set
of correlated equilibria [11][10] and a more restricted result
regarding the bounds of regret minimization in information
sets of extended games [17]. Both theoretical results suggest
that explicit communication and collaboration only brings
limited benefit, at the expense of far worse system flexibility.

Our work quantifies this benefit and analyzes its impact
on an actual system which can be expected to run in the
adversarial environment. The experimental results show that:

• both the global and distributed implementation of re-
gret minimization do converge towards the correlated
equilibria/Nash equilibria and the most-frequently played
strategies are identical for both approaches,

• the distributed game presents more variable behavior, i.e.
it tends to converge towards a mixed equilibria, which is
less predictable by the opponent, but,

• the global version of the game outperforms the distributed
version from the utility maximization point of view, due
to the price of non-synchronization.

Our results suggest that independently optimized compo-
nents would perform very well under most circumstances
where the slight sub-optimality would be compensated by the
ease of integration, fewer maintenance problems and more
open integration/reconfiguration options. Both the global ap-
proach and the local approach provide result in robust behavior
which in some aspects exceeds the theoretical guarantees by
actually converging into the Nash equilibria. Furthermore, the
individual adaptation of components results in globally rich
and nearly unpredictable behavior, which is by its nature
resistant to modeling through adversarial machine learning
techniques [6], [4]. Furthermore, the lack of coordination
communication between agents and corresponding interfaces
reduces the IDS attack surface visible to the sophisticated
attacker and make the system more difficult to exploit.
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[21] T. Alpcan and T. Başar, “A game theoretic approach to decision and
analysis in network intrusion detection,” in Proceedings of the 42nd
IEEE Conference on Decision and Control, Maui, HI, December 2003,
pp. 2595–2600. [Online]. Available: papers/cdc03 alpcan WeP03-1.pdf

[22] ——, “An intrusion detection game with limited observations,” in 12th
Int. Symp. on Dynamic Games and Applications, Sophia Antipolis,
France, July 2006. [Online]. Available: papers/isdg06.pdf

[23] Y. Al-Nashif, A. A. Kumar, S. Hariri, Y. Luo, F. Szidarovsky, and
G. Qu, “Multi-level intrusion detection system (ml-ids),” in ICAC
’08: Proceedings of the 2008 International Conference on Autonomic
Computing. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 131–140.

[24] G. Giacinto, R. Perdisci, M. D. Rio, and F. Roli, “Intrusion detection
in computer networks by a modular ensemble of one-class classifiers,”
Information Fusion, vol. 9, no. 1, pp. 69–82, 2008.

Distribution A:  Approved for public release; distribution is unlimited.



Game Theoretical Adaptation Model for Intrusion Detection
System∗

(Extended Abstract)
Martin Rehak†‡, Michal Pechoucek†‡, Martin Grill†, Jan Stiborek†, Karel Bartos†

† Department of Cybernetics, Czech Technical University in Prague, Czech Republic
‡ Cognitive Security s.r.o., Prague, Czech Republic

martin.rehak@agents.felk.cvut.cz

ABSTRACT
We present a self-adaptation mechanism for Network Intrusion De-
tection System which uses a game-theoretical mechanism to in-
crease system robustness against targeted attacks on IDS adapta-
tion. We model the adaptation process as a strategy selection in
sequence of single stage, two player games. The key innovation
of our approach is a secure runtime game definition and numerical
solution and real-time use of game solutions for dynamic system
reconfiguration. Our approach is suited for realistic environments
where we typically lack any ground truth information regarding
traffic legitimacy/maliciousness and where the significant portion
of system inputs may be shaped by the attacker in order to render
the system ineffective. Therefore, we rely on the concept of chal-
lenge insertion: we inject a small sample of simulated attacks into
the unknown traffic and use the system response to these attacks
to define the game structure and utility functions. This approach is
also advantageous from the security perspective, as the manipula-
tion of the adaptive process by the attacker is far more difficult. Our
experimental results suggest that the use of game-theoretical mech-
anism comes with little or no penalty when compared to traditional
self-adaptation methods.

Categories and Subject Descriptors
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]: Gen-
eral—Security and protection

General Terms
Algorithms, Security
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1. INTRODUCTION
In this paper, we use the game-theoretical models to improve the

security of the adaptation process within a distributed, agent-based
Intrusion Detection System (IDS). The high-level self-adaptation
method that we develop our approach on [2] has been designed
for the intrusion detection systems based on the anomaly detection
paradigm: these systems observe the past behavior of the mon-
itored network/hosts, predict their future behavior using statisti-
cal and other models and identify the behavior diverging from the
prediction as anomalous. Adaptation, self-management and self-
optimization techniques that are used inside an IDS can signifi-
cantly improve their performance [2] (i.e. reduce the number of
false alarms) in a highly dynamic environment, but are also a po-
tential target for an informed and sophisticated attacker. When the
adaptation techniques are deployed improperly, they can alow the
attacker to reduce the system performance against one or more crit-
ical attacks. This paper presents a game theoretical model of adap-
tation processes inside an autonomic, self-optimizing IDS, presents
an architecture integrating the process with an existing IDS.

We present an architecture that integrates the abstract game
model into an IDS with self-monitoring capability, in order to simu-
late the worst case, optimally informed attacker and to optimize the
system behavior against such attacker. Such (hypothetical) attacker
with full access to system parameters could dynamically identify
the best strategy to play against the system. Optimizing the detec-
tion performance against the worst case attacker protects the system
from more realistic attacks based on long-term probing and adver-
sarial machine learning approaches referenced above.

2. GAME MODEL
We conceptualize the relationship between the attacker and the

defender as a sequence of single stage, two player, non-zero sum
games, where the attack/defence actions of both players correspond
to strategies in the game-theoretical model of their interaction and
the environment evolves between the game. The game model (and
utility functions in particular) are based on [1], with additional in-
puts from the network administrators and actual IDS users. The
game model integrates the preferences and strategies of two play-
ers (attacker and defender). Their strategy sets are defined as a
selection of IDS configurations for the defender and the selection
of a particular attack type (e.g. buffer overflow, password brute-
force, scan...) for the attacker. The main difference of the utility
functions from [1] is the relaxation of the requirement on the iden-
tical attacker gain/defender loss and the proportionality of associ-
ated costs (alarm processing, monitoring etc.) with the gain/loss
value. This requirement was considered as too strong by the sys-
tem administrators we have questioned.
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Figure 1: Indirect online variant of game/IDS integration.

The actual utility function values of both players depend prin-
cipally on the sensitivity of the system using defender’s strategies
with respect to individual attacker’s strategies (αi,j) , and the as-
sociated rate of false positives (βi) for each configuration. αi,j

denotes the probability that the j-th attack strategy is detected by
the IDS when the defender plays the i-th defence strategy and βi
denotes the probability that the i-th defender’s strategy will result
in a false alert. These parameters shape the utility functions of
both players in each game stage. By our experience, these values
wary widely with changing characteristics of the background traf-
fic and need to be estimated dynamically for each given game in a
sequence, as we will present below.

The gameplay is very simple in our case: both players simultane-
ously select their strategies from the set S and the combination of
these strategies determines the payoffs to attacker and defender, as
defined by their respective utility functions. The solution concepts
used to solve/analyze the game are Max-Min and Nash equilibria.
We play a sequence of games described above, each correspond-
ing to one time interval. The individual games in the sequence are
differentiated by the dynamically evolving parameters of player’s
utility functions. We consider the individual games to be indepen-
dent and we don’t carry over any information between them.

3. ARCHITECTURE
There are two existing approaches to integration of the game

model with an IDS:
� Off-line integration, when the game is defined in design time,

solved analytically, using a priori knowledge about expected im-
pacts and success likelihood of the attacks, and the system pa-
rameters are fixed to resulting strategies according to game results.
Game theory use ensures that the system parameters are set to force
the adversary into the selection of less damaging (or more ratio-
nal) strategies. It is sufficient for systems deployed in stable envi-
ronments, but most IDS need to cope with dynamic environments,
where the background traffic an other factors change frequently. In
such environments, the static strategies perform poorly.
� Direct on-line integration, when the game uses presumed ad-

versary actions in the observed network traffic to define the game
is the opposite approach. The game is being defined by the actual
actions of real-world attackers executed against the monitored sys-
tem, elegantly solving the relevance problem. On the other hand,
direct interaction between the adversary and the adaptation mech-
anism makes the system potentially vulnerable to attacks against
the adaptation algorithms, creating a new attack surface. Motivated
attacker can easily mislead the IDS by insertion of a sequence of
attacks that are orthogonal to its actual plan to target its utility.

Our approach, named indirect online integration combines the
above approaches and provides interesting security properties de-
sirable for real-world deployment. The solution uses the concept of
challenges [2] to mix a controlled sample of legitimate and adver-
sarial behavior with actually observed network traffic and is a com-
promise between the above approaches (see Fig. 1). In this case,
the real traffic background (including any possible attacks) is pro-
cessed in conjunction with simulated hypothetical attacks within
the system. We measure the system response to these challenges,
drawn from the realistic attack classes, and use them to estimate the
system response to the real-world samples from the same classes.
In practice, we will define one class for each broadly defined at-
tack/legitimate traffic type and measure the difference between the
system response to legitimate traffic and to various classes of mali-
cious traffic. The challenges are then mixed with the real traffic on
IDS input and the system response to them is used as an input for
game definition, measuring/estimating the current values of: αi,j

and βi. The major advantage is higher robustness w.r.t strategic
attacks on adaptation algorithms, and lower system configuration
predictability by the adversary, as the simulation runs inside the
system itself and its results can not be easily predicted by the at-
tacker.

This approach offers the optimal mix of situation awareness and
security against engineered inputs. In this case, we actually play
against an abstract opponent model inside the system, and expect
that the moves that are effective against this opponent will be as
effective against the real attacks. The advantage of this approach
is not only in its security, but also in better model characteristics
in terms of strategy space coverage (unfrequent, but critical attacks
are covered), robustness and relevance – the abstract game can rep-
resent the attacks and utility combinations that would be obvious
only for insider attackers.

4. CONCLUSIONS
The experiments we have performed with a simplified (and mod-

ified) version of commercially available IDS solution clearly showed
that the game theoretical models/solvers integrated into an adap-
tive IDS provide the results more than equivalent to the alternative
direct optimization methods, as we have verified on inserted chal-
lenges and real-world attacks performed on the monitored network.
These methods provide robust performance and reliably converge
when using both max-Min or Nash equilibria. The additional ben-
efits, such as increased robustness against an attacker with insider
access, therefore build a strong case for their use by the industry.
In particular, our results suggest that the max-min solution con-
cept provides very consistent results, does not require an explicit
model of opponent’s utility function and is computationally triv-
ial, making it an interesting first choice for future proof-of-concept
implementations.
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Optimizing Flow Sampling for Network Anomaly
Detection

Karel Bartos, Martin Rehak, Vojtech Krmicek

Abstract—Sampling techniques are widely employed in high-
speed network traffic monitoring to allow the analysis of high
traffic volumes with limited resources. Sampling has measurable
negative impact on the accuracy of network anomaly detection
methods. In our work, we build an integrated model which puts
the sampling into the context of the anomaly detection used in
the subsequent processing. Using this model, we show that it is
possible to perform very efficient sampling with limited impact
on traffic feature distributions, thus minimizing the decrease of
anomaly detection efficiency. Specifically, we propose an adaptive,
feature-aware statistical sampling technique and compare it both
formally and empirically with other known sampling techniques
– random flow sampling and selective sampling. We study the
impact of these sampling techniques on particular anomaly
detection methods used in a network behavior analysis system.

I. INTRODUCTION

Sampling is frequently used by network monitoring and
intrusion detection devices to handle the large volumes of
traffic in a cost-effective manner. There are many sampling
methods available (see their discussion in Section II), but
these methods are mainly optimized to preserve the low-
level parameters, such as traffic volume or number of packets.
However, the use of sampled data for more advanced analysis,
such as Network Behavior Analysis, is problematic [10], as
the sampling severely harms the effectiveness of the anomaly
detection and data analysis algorithms. These algorithms are
based on pattern recognition and statistical traffic analysis,
and the distortion of traffic features can significantly increase
the error rate of these underlying methods by breaking their
assumptions about traffic characteristics.

In our paper, we analyze flow-level sampling of NetFlow/
IPFIX information, and provide three principal contributions:
• A formal model integrating the sampling with the subse-

quent stages of processing, which allows us to analyze
the impact of sampling on anomaly detectors used in the
subsequent processing of information. (Section III)

• A concept of late sampling, which significantly improves
the performance of sampling methods by interleaving
them with early stages of anomaly detection. (Sec. IV-A)

• An adaptive sampling method, which optimizes the sam-
pling algorithm behavior w.r.t. the anomaly detection
algorithms used later in the processing. (Section IV-B)

The improvements, which are clearly outlined in Section V,
come with a price. The techniques outlined in this paper
are based on a violation of the traditional layering applied
to traffic monitoring methods. The lower layers of network
monitoring solutions, that actually perform the sampling, need
to be aware of the traffic features used by the higher layer

algorithms, and need to modify their behavior following any
reconfiguration of the upper layers. The improvements of
client system performance justify additional complexity in a
significant subset of deployment scenarios.

II. RELATED WORK

There are two basic classes of sampling techniques: packet-
based and flow-based methods. The packet-based sampling
methods work on the level of the network packets. Each
packet is selected for monitoring with a predefined probability
depending on the sampling method used. The main advantage
of the sampling deployment was the decreased requirements
for memory consumption and CPU power on the routers as
well as the possibility to monitor higher network speeds.

Although the packet sampling is easy to implement, it
introduces a serious bias in flow statistics [4], [8]. The typical
application of packet sampling on network traffic for traffic
analysis, planning and management purposes has been studied
in [5], [6]. Further research in packet sampling introduced
adaptive packet sampling techniques [6], [2]. These techniques
adjust the sampling rate depending on the current traffic
load in order to acquire more accurate traffic statistics. An
adaptive non-linear sampling method, which should preserve
distribution of small flows and large flows is described in [9].

In case of flow sampling, the monitored traffic is aggregated
into network flows and the sampling itself is applied not to the
particular packets, but to the whole flows. The main benefit
is better accuracy when compared to packet sampling [8], but
they require more memory and CPU power.

Smart sampling [4] and sample-and-hold [7] techniques
were introduces in order to reduce the memory requirements.
Both of these techniques are focused on accurate traffic estima-
tion for larger flows, so called heavy-hitters. The comparison
of packet sampling with flow sampling is presented in [8].
The flow sampling is superior in flow distribution preservation,
while the smart sampling prefers the large flows over the small
ones. The comprehensive literature review can be found in [3].

Some recent papers do not focus only on the accuracy of
sampling methods, but also on their on anomaly detection.
The authors of [10] evaluate how the performance of anomaly
detection algorithms is affected by random packet sampling,
random flow sampling, smart sampling and sample-and-hold
sampling. Their results demonstrate that the random packet
sampling introduces a measurable bias and decreases the
effectiveness of the detection algorithms. Overall, the random
flow sampling proved to be a good choice.

The work by [1] proposes selective flow sampling, priori-
tizes small flows and therefore improves the results of several
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Sampling
Method

Sampling
Level

Volume
Preserv.

Distrib.
Preserv.

Anomaly
Detection

Random Packet Sam-
pling

P × × ×

Adaptive Packet Sam-
pling

P ◦ × ×

Adaptive Non-Linear
Sampling

P • × ×

Random Flow Sam-
pling

F • ◦ ◦

Smart Sampling F • × ×
Sample and Hold
Sampling

F • × ×

Selective Sampling F × × •

TABLE I: The overview of the sampling methods, sampling
levels (P - packet, F - flow) and their suitability for anomaly
detection and for preserving traffic volumes and distributions.
Legend: × - not suitable, ◦ - partially suitable, • - suitable.

anomaly detection methods. The presented results demonstrate
that the sampling introduces serious bias in traffic feature
distribution and therefore the effective use of this method is
limited only to detection of specific types of anomalies.

The overview of the described sampling methods is pre-
sented in the Table I. We can see that the majority of
sampling methods were designed for traffic monitoring, while
the preservation of the traffic features crucial for the anomaly
detection is suboptimal. We shall mention that the random flow
sampling method provides relatively good results in all three
areas. The selective sampling method represents the case of
the sampling method directly designed for anomaly detection.

III. MODEL OF IDEAL FLOW SAMPLING

In this Section, we introduce the ideal flow sampling
process, which is used for selecting the most relevant flows
(from the network security perspective). Intuitively, the ideal
sampling should be a process in which number of samples and
their distribution are selected in such a way that the loss of
information is minimal. Almost all existing anomaly detection
methods use statistical distribution of flows to model the net-
work traffic. That means to minimize the loss of information, it
is reasonable to preserve as much of the statistics as possible.

Each flow x can be identified by a set of features like source
IP address or protocol. We will denote k-th feature as Xk and
the probability of selecting a flow x into the sampled set as
p(x). Furthermore, the statistical information is captured by
feature moments which are computed from feature values. We
distinguish between two types of feature moments:
• feature counts c(x |Xk) indicating summations and num-

bers of flows related to x through the feature Xk (in flows,
packets or bytes). We will implicitly use these feature
counts in number of flows unless told otherwise.

• feature entropies eXk
(x |Xl) describing the entropy of

feature Xk of flows related to x through the feature Xl.
Finally we will denote the original finite unsampled set as U
and the finite set of samples as S. Thus cS(x|srcIP ) denotes
the number of flows from the sampled set with exactly the
same source IP as has this flow x. While eU

sIP (x|dP ) is the

entropy of source IP addresses from the original unsampled
set, whose flows target exactly the same destination port as
flow x. When we will consider feature counts across more (q)
features, we will denote them as c(x|X1, . . . , Xq) etc.

Definition 1: Let S1, . . . ,Sm be various sets of flows se-
lected from U with probability p(x). Feature moment c(x|Xk)
is reversible in U if and only if:

∀x ∈ U : lim
m→∞

m∑

i=1

(
cU(x|Xk) · p(x)− cSi(x|Xk)

)
= 0.

In the following, we will denote relative uncertainty RU ,
describing normalized entropy feature moment eXk (x|Xl), as:

RU(eXk (x|Xl)) =
eXk (x|Xl)

log c(x|Xl)
∈ [0, 1].

Definition 2: Let S1, . . . ,Sm be various sets of flows selected
from U by using probability p(x). Feature moment eXk

(x|Xl)
is reversible in U if and only if:

∀x ∈ U : lim
m→∞

m∑

i=1

(
RU(eU

Xk
(x|Xl))−RU(eSi

Xk
(x|Xl))

)
= 0.

Definition 3: Let Xi be i-th flow feature. Feature variability
V(XU

i ) of feature Xi is defined as the number of distinct
values of feature Xi in U.

Definition 4: Ideal sampling with sampling probability p(x)
is defined as a sampling where:

1) all feature moments (counts and entropies) are reversible

2) coefficient V(XS
i )

V(XU
i )

for all features is maximized.

Each of the criteria caters to different kind of anomaly
detection approaches: feature moment reversibility is essential
for the methods based on statistical and pattern recognition
methods, while the feature variability is also essential for
knowledge-based approaches that depend on specific values of
individual features. This idealistic process defines two actually
usable quality metrics, that can be applied to any implemented
sampling method in order to quantify the quality of the result
it provides from the anomaly detection standpoint:

1) feature representation – describes the deviation (interval
[0,1]) of a probability distribution from the ideal distribution,
and thus measures the reconstruction error in the reversibility
of count moment c(x|Xk):

frep

c (Xk) =
1

| U | ·
∑

∀x∈U
| cS(x|Xk)− p(x) · cU(x|Xk) |

and the reconstruction error of entropy moment eXk
(x|Xl):

frep

e (Xk, Xl) =
1

| U | ·
∑

∀x∈U
| RU(eU

Xk
(x|Xl))−RU(eS

Xk
(x|Xl)) |

2) feature coverage – describes the variability of feature:

f cov(Xi) =
V(XS

i )

V(XU
i )
∈ [0, 1].

We use these measures to compare the properties of pro-
posed sampling technique (introduced in Section IV) with two
existing sampling techniques (random and selective [1]).
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IV. APPROXIMATION OF THE IDEAL FLOW SAMPLING

In this section, we will introduce an adaptive sampling al-
gorithm that uses multi-stage processing and its knowledge of
client anomaly detection algorithms to improve the sampling
quality. The knowledge of features and moments used for
anomaly detection in the subsequent stages allows us to reduce
the sampling-induced errors where it matters the most.

A. Algorithm Structure and Late Sampling

The main challenge is the fact that the feature coverage and
feature representation criteria are contradictory – improvement
in one, while respecting an imposed sampling rate, directly
negatively impacts the other. The algorithm we propose avoids
making tradeoffs between these criteria by splitting the early
stage of anomaly detection processing – feature extraction,
and performing this operation before sampling. While this
operation obviously breaks layering used in current systems,
it is based on the rationale that the computational cost of
the feature extraction phase is typically insignificant when
compared to the cost of the rest of the processing.

The current techniques perform early sampling, where they
compute the statistics (feature moments) after the sampling, so
the moments suffer loss of precision [10]. The advantage of
this, traditionally used sampling method is that there is no
need to perform initial preprocessing of feature moments.

Using the late sampling, that we introduce in this paper, the
system computes the moments before the sampling procedure,
so the moment values are computed from the original, full
set of data. This sampling method benefits from the fact that
it can use exact statistical information about the original set,
both for sampling technique itself, and for subsequent anomaly
detection. However, there are specific scenarios, where this
technique may not be applicable due to the nature of monitor-
ing hardware or simply due to the extremely high traffic flow.
The direct effect of late sampling is that it provides a perfect
and unbiased information about the unsampled traffic.

B. Feature-Aware Sampling Algorithm

In this section, we will introduce the algorithm that opti-
mizes the diversity of the measured flows by application of
simple heuristics. The algorithm is based on the assumption
that the incremental value of flows in a single set (defined
by one or more common feature values) decreases with the
growing number of similar flows already in the set. Therefore,
the method is able to shrink the large sets of flows, while
emphasizing the small artifacts that may be equally important
from the security perspective. We assume that there are fea-
tures with greater or lesser importance and impact on anomaly
detection. We will denote the most important features as
primary features and the rest is denoted as secondary features.

Definition 6: Let X1, . . . , Xk be primary features. We define
primary probability as the probability that a flow related to x
through features X1, . . . , Xk is selected to the sampled set:

pp(x|X1, . . . , Xk) =

{
s c(x|X1, . . . , Xk) ≤ t

s · log t
log c(x|X1,...,Xk)

c(x|X1, . . . , Xk) > t

where s ∈ [0, 1] is sampling rate and threshold t defines a point
in the distribution, where our sampling technique starts to set

the probability proportionally to the size of the moment. The
higher the moment value, the lower sampling rate is assigned.

This modification from the random sampling slightly shifts
the original probability distribution for flows with moment
values above the threshold. We argue that reducing the size of
attacks with higher values of moments (above the threshold)
that are mostly easily detectable does not harm the anomaly
detection effectiveness. Furthermore, such decrease in sam-
pling rate allows to increase the sampling frequency when
needed with no change in total amount of sampled flows.

Definition 7: Let X1, . . . , Xk be primary features and let
Xi be a secondary feature. We define secondary probability,
which is a probability that a flow related to x through the
feature Xi is selected to the sampled set, as:

ps(x|Xi) =

{
d c(x|X1, , Xk) > t ∧RU(eXi(x|X1, , Xk)) ∈ I1
1 otherwise

I1 ∈ [0, ε] ∪ [1− ε, 1], ε ∈ (0, 0.5),

where d ∈ (0, 1] is a parameter characterizing the decrease
of incremental infomation value of the set with almost all
identical flows (RU → 0) or on the other side, mostly diverse
flows (RU → 1). Parameter ε determines the size of the
interval, where the flows are considered as almost identical
or mostly diversed.

Definition 8: Let X1, . . . , Xk be primary features and
Xk+1, . . . , Xn secondary features. Then the probability that
the adaptive sampling will select flow x is defined as follows:

p(x) = pp(x | X1, . . . , Xk) ·
n∏

i=k+1

ps(x | Xi). (1)

Theorem 1: Let S(r)
1 , . . . ,S(r)

m be sets of flows created
by random sampling from U with sampling rate r. Let
S(a)
1 , . . . ,S(a)

m be sets of flows created by the adaptive sam-
pling with primary feature Xi and parameter s computed as:

s =
r· | U |∑

c(x|Xi)≤t 1 +
∑

c(x|Xi)>t
log t

log c(x|Xi)

. (2)

Then it holds:

S
(r)

= lim
m→∞

(
1

m
·

m∑

i=1

|S(r)
i |
)
≥ lim

m→∞

(
1

m
·

m∑

i=1

|S(a)
i |
)

= S
(a)

.

Proof: When the random sampling technique is used, we can
express the average number of sampled flows S

(r)
as follows:

S
(r)

= r· | U |= s ·


 ∑

c(x|Xi)≤t

1 +
∑

c(x|Xi)>t

log t

log c(x|Xi)




Note that the summations sum all flows x satisfying the
threshold condition. Now we can express S

(a)
as:

S
(a)

= s ·


 ∑

c(x|Xi)≤t

1 +
∑

c(x|Xi)>t

log t

log c(x|Xi)


− εp

where εp ≥ 0 represents decrease in number of sampled flows
caused by secondary probabilities. Computing parameter s
according to the Eq. 2 guarantees the theorem statement. �

The proposed adaptive sampling is able to modify the
sampling probability to reflect feature distributions of network
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traffic. It selects flows according to the size of their moments
in order both to suppress large, visible and easily detectable
events, and to relieve some interesting facts from the smaller
ones, while the feature distributions are slightly shifted for
the benefit of the anomaly detection. Adaptive sampling also
provides an upper bound in total number of sampled flows as
stated in Theorem 1. This theorem guarantees that the total
number of sampled flows does not exceed predefined limit.

V. EXPERIMENTAL EVALUATION

The goal of the sampling evaluation is to compare various
flow based sampling algorithms (we didn’t focused on packet
based sampling methods due to the significantly worse results
[10]) at the real network traffic data. We performed two
classes of evaluation. Firstly, we inspected the influence of
the sampling methods on the traffic feature distributions and
consequently, we evaluated the impact of sampling methods
on the anomaly detection methods itself. The settings of the
adaptive sampling was the following: we set c(x|srcIP ) as
the primary feature, esrcPrt(x|srcIP ), edstIP (x|srcIP ) and
edstPrt(x|srcIP ) as the secondary features, d = 0.8, ε = 0.1
and t = 1000.

Because performing the experimental attacks directly in
the real campus network (1Gb link) can harm the network
services used by ordinary users, we decided to perform a set
of experimental attacks in a separated testbed laboratory. These
attacks were inserted to the live campus traffic background.

The first attack represents an escalated TCP vertical scan
from one attacker IP address against one victim IP address.
This attack started at 250 flows per 5 minutes only, but it
grown up to 1 million flows progressively, in each successive 5
minute step. The second attack was motivated by the scenario,
when the attacker launches a large DDoS attack, which is used
for hiding the more serious SSH brute force attack (but with
small intensity) against other victim in the same network.

A. Impact of Sampling on the Probability Distributions

In this Section, we will compare the differences of three
sampling techniques (random, selective[4], and adaptive) from
the ideal sampling by using measures described in Sec. III to
evaluate the ability of preserving feature moments. For this
evaluation, we used the network traffic from scenario with
large DDoS and hidden SSH brute force attack.

First we evaluated two moments widely used for
the anomaly detection - number of source IP addresses
c(x|srcIP ) and entropy of destination IP addresses for a given
source IP address edstIP (x|srcIP ). The lower the feature
representation value, the more reversible the moment is. As
you can notice from Table II, random sampling overcomes the
other techniques in c(x|srcIP ), while selective sampling con-
firms its selection speciality, which resulted in less reversible
values. The adaptive sampling is shifted due to the variable
sampling probability. However in case of the entropy moment,
the adaptive sampling has the lowest reconstruction error.

In the second part of this evaluation, we compared feature
coverage measure of source and destination IP addresses to
discover how well each method preserves feature variability.

frep(csrcIP (x)), frep(edstIP (x | srcIP ))
rate adaptive random selective

1:2 0.377, 0.284 0.205, 0.336 0.811, 0.414
1:5 0.500, 0.422 0.372, 0.444 0.946, 0.596
1:20 0.673, 0.600 0.600, 0.611 0.985, 0.749
1:100 0.936, 0.782 0.904, 0.783 0.996, 0.859

TABLE II: Feature representation measure for number of
source IP addresses and entropy of destination IP addresses.

fcov(srcIP ) | fcov(dstIP )
rate adaptive random selective

1:2 0.922 | 0.778 0.884 | 0.875 0.687 | 0.674
1:5 0.896 | 0.814 0.878 | 0.859 0.689 | 0.658
1:20 0.869 | 0.868 0.859 | 0.884 0.683 | 0.645
1:100 0.833 | 0.817 0.829 | 0.833 0.524|0.532

TABLE III: Feature coverage of source and dest. IP addresses.

As you can see from Table III, selecting source IP addresses
as the primary feature of adaptive sampling clearly positively
affected feature variability of source IP addresses, but nega-
tively influenced variability of destination IP addresses.

In our evaluation, we clearly demonstrated that the mo-
ments of the adaptive sampling are much more reversible
than the moments of selective sampling technique specialized
on the anomaly detection. Some moments, especially those
related to the primary features, are even more reversible than
corresponding moments of random sampling, which makes
the adaptive sampling a promising approach for preserving
statistical information. Therefore the selection of the primary
features is very crucial with respect to the detection techniques
behind the sampling algorithm.

B. Impact of Sampling on the Anomaly Detection Methods

In this Section, we will present the evaluation of the
detection quality of simulated attacks when using:
• unsampled and sampled data,
• various flow sampling techniques,
• statistical information based on sampled or full datasets

(early and late sampling) – see Sec. IV-A.
More specifically, we compared the unsampled approach with
four types of sampling techniques: Random E, Random L,
Selective L and Adaptive L. The capitals E and L denotes early
and late sampling described in Section IV-A. We compared the
sampling methods according to both the number of selected
flows from the attack and the detection quality, which is mea-
sured by using network behavioral anomaly device CAMNEP
[11]. The detection quality represents the difference between
the trustfulness of the global threshold ξ (which separates the
flows into malicious or legitimate classes) and the average
trustfulness of the attack flows Θ(ϕj):

Quality = ξ −Θ(ϕj).

1) Scan Scenario: First we evaluated the sampling methods
on the escalated TCP scan. In Fig. 1 (a) we compared each
method quantitatively, i.e. according to the amount of selected
traffic belonging to the simulated attack. The appropriateness
of selective sampling method for scan detection is confirmed
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by the increased numbers. Adaptive sampling selects smaller
scans with higher probability than larger ones, which illustrates
the shift on the left hand side. Larger (easily detectable) attacks
were sampled with lower probability allowing the possibility
of concentration on smaller events with no increase in the total
amount of sampled traffic. This follows an intuition that the
information value of individual flow in large attack is smaller.

The proportion of simulated TCP scan in sampled traffic is
depicted in Fig. 1 (b). The final size of the attack occupies
nearly 80% of sampled data when using selective sampling,
while only 40% when using adaptive sampling. Thus the
adaptive sampling has enough space in the sampled set for
other interesting events on the network.

The quality of detection is depicted in Fig. 1 (c). Late
selective, late adaptive and unsampled method successfully
detected all sizes of the attack. On the contrary, late random
and especially early random missed first smaller attacks.

2) Hidden SSH Brute Force Scenario: Next scenario con-
tains a large DDoS attack, which covers more serious SSH
brute force attack of smaller size (max 500 flows). Late
selective sampling, which is not specialized on this type of
attack, selected significantly less number of attack flows than
late random and late adaptive, as illustrated in Fig. 1 (d). This
Figure shows the proportion of the SSH brute force attack in
sampled set depending on the size of escalated DDoS attack.

Graphical representation of the detection quality with sam-
pling rate 1:5 can be seen in Fig. 1 (e). The worst and
unsatisfactory results has early random sampling, while by
using late sampling techniques the system detected the attacks
more successfully (even better than unsampled approach), with
late adaptive sampling slightly better than others. For selective
sampling, the late approach has crucial effect on the detection
quality, because it compensates the lack of attack flows in
sampled set, so the system was able to recognize them.

When we decrease the sampling rate to 1:100, the situation
becomes quite different (all methods failed), as you can see
in Fig. 1 (f). Late selective sampling selected attack flows in
only one dataset. The low sampling rate negatively influenced
early random sampling as well as other late samplings.

VI. CONCLUSION

This paper has presented three principal contributions. First,
we introduced formal model of ideal sampling together with
two types of quality metrics, which we used to evaluate
similarities between the ideal sampling and three other types
of sampling algorithms. The metrics can be applied to any
implemented sampling method in order to quantify the quality
of the result it provides from the anomaly detection standpoint.

Next contribution of this paper was introducing a concept of
late sampling, which significantly improved the performance
of sampling methods. The late sampling technique provides
exact statistical information about the original dataset, which
makes this technique really suitable for anomaly detection
environments that are based on those statistics.

Finally, we proposed the adaptive flow-based sampling
method, which optimizes the sampling behavior with respect
to the anomaly detection algorithms used later in the detection
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Fig. 1: Experimental evaluation.

processing. The adaptive sampling is a promising general
sampling technique that preserves well the traffic feature
distributions and at the same time is able to improve the
detection capabilities of the system.
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